

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Cairo University
Institute of African Research and Studies
Department of Natural Resources

BIOCHEMICAL EVALUATION OF BABY FOODS PREPARED FROM SOME AFRICAN CROPS

BY

NAHED LOTFY ZAKI ABD EL-WAHED

B.Sc. Agric. Sci. (Food Science) Cairo Univ., (1994) Diploma in African Studies (Natural Resources), 1997

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE OF AFRICAN STUDIES

IN

NATURAL RESOURCES (PLANT RESOURCES)

Under supervision of

Prof. Dr. Adel Saad El-Hassanin

Vice-Dean, Inst. Of African Res. And Studies

Dr. Mohamed Hassan Aly Hussein Associate Prof., Food Sci. and Tech. Dept., Fac. of Agric., Cairo Univ.

Dr. Nadia Taha Saleh Senior Researcher, Food Technology Research Institute, A.R.C

B

2002

APPROVAL SHEET

Name : Nahed Lotfy Zaki Abd El-Wahed

Title : Biochemical evaluation of baby foods prepared

from some African crops

Degree : Master of Science in Natural Resources

This Thesis has been approved by:

Professor of Biochemistry, Food Technology Research Institute, Agricultural Research Center, Giza.

Dr. Mohamed Mohamed Ahmed El-Nikeety. A. M. M. Wilkety

Associate Professor of Food Science and Technology, Food Science and Technology Department, Faculty of Agriculture, Cairo University.

Prof. Dr. Adel Saad El-Hassanin

Vice-Dean of Institute of African Research and Studies.

Dr. Mohamed Hassan Aly Hussein Aly

Associate Professor of Food Science and Technology, Food Science and Technology Department, Faculty of Agriculture, Cairo University.

Date: 20/2/2002

Committee in charge

Abbreviations

B.V Biological value

C.S Chemical score

D.M Dry matter μl Micro litre

N.D.P.V Net dietary protein value

N.P.U Net protein utilization

P.E.R Protein efficiency ratio

P.D Protein digestability

P.D.C.A.A.S Protein digestability corrected amino acid score

R.D.A Recommended dietary allowances

R.N.V Relative nutritive value

T.B.C Total bacterial count

T.D True digestability

W.A.I Water absorption index

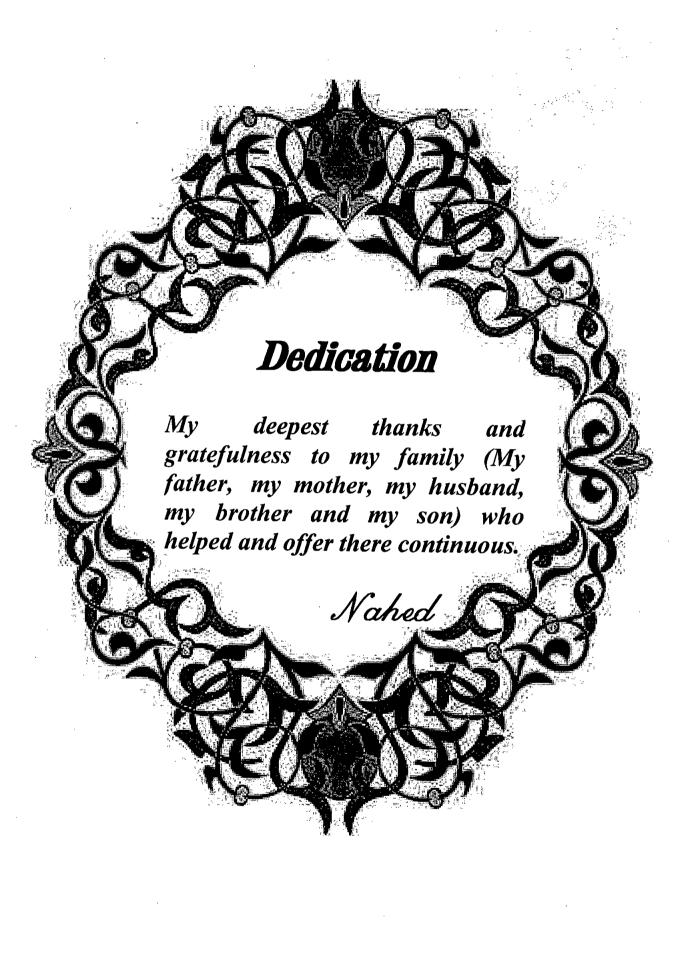
W.S.I Water solubility index

ACKNOWLEDGEMENT

First, thanks are all to God for blessing this work until it reachs an end, as a little part of his generous help through life.

I would like to express my deepest gratitude to **Prof. Dr. Adel Saad El-Hassanin**, Vice-Dean, Inst. of African Research and Studies,
Cairo University, for his supervision, valuable suggestions and continuous guidance.

Thanks and gratefulness will not be enough to express my great indebtedness to **Dr. Mohamed Hassan Aly**, Associate Prof. of Food Science and Technology, Food Science and Technology Dept., Faculty of Agriculture, Cairo University, for his supervision, helpful advice and unlimited help during the preparation and writing of thesis.


Sincere appreciation and gratitude are extended to **Dr. Nadia T. Saleh** Senior Researcher at Food Technology Research Institute, Agricultural Research Center (A.R.C), Giza, for her supervision, valuable help, encouragement and guidance through the present investigation.

Deep appreciation is also extended to **Prof. Dr. Saeed Mansour**, Prof. and Vice-Dean of Food Technology Research Institute,
Agricultural Research Center for his generous help and guidance during this study.

Faithful thanks are also due to **Prof. Dr. Hanna M. Sidky**, Prof. at Food Technology Research Institute, Agricultural Research Center, for the sincere help given by her during writing this thesis.

I would like to thank all my friends and all the staff members at Food Technology Research Institute, A.R.C. for helping me in various ways.

Finally, my sincere appreciation goes to the staff members of the Dept. of Natural Resources, Inst. of African Research and Studies for teaching me post-graduate courses in the different fields of Natural Resources.

Contents

	Page
1. Introduction	1
2. Aim of investigation	3
3. Review of Literature	4.
Chemical composition and nutritive value of some cereals,	4
legumes and dried skimmed milk	•
3.1.1 Sorghum.	4
3.1.2 Lentil	7
3.1.3 Rice	9
3.1.4 Defatted soy flour	11
3.1.5 Dried skimmed milk	13
3.2 Effect of germination on cereals and legumes	15
3.2.1 Sorghum	15
3.2.2 Lentil	17
3.3 Effect of extrusion processing on physico-chemical characteristics	22
and nutritional values of cereals and legumes	
3.4 The recommended daily allowances for children	29
3.5 Weaning foods	32
4. Materials and Methods	43
4.1 Raw materials	43
4.2 Preparation of raw materials	43
4.2.1 Germination of sorghum and lentil	43
4.2.2 Milling and seiving.	44
4.2.3 Extrusion of materials	44
4.3 Preparation of baby food formulae	44
4.3.1 Meal preparation of baby foods	46
4.4 The physical properties measurements	46
4.4.1 Expansion ratio.	46
4.4.2 Bulk density	46
4.4.3 Water absorption index (WAI) and water solubility index	r o
(WSI)	46

	Page
4.5 Chemical analysis	47
4.5.1 Gross chemical analysis	47
4.5.2 Determination of minerals	47
4.5.3 Determination of amino acids	48
4.5.3.1 Acid hydrolysis of samples	48
4.5.3.2 Amino acid derivatization	48
4.5.4 Tryptophan determination	49
4.5.5 Determination of amino acids score	50
4.5.6 Total calorific values	50
4.5.7 In vitro protein digestability	50
4.5.8 Determination of anti-nutritional factors	51
4.5.8.1 Determination of tannins	51
4.5.8.2 Determination of phytic acid	51
4.5.8.2.1 Extraction	51
4.5.8.2.2 Reagents	52
4.5.8.2.3 Determination	52
4.5.8.3 Determination of trypsin inhibitor	55
4.5.8.3.1 Extraction	55
4.5.8.3.2 Determination	55
4.6 Microbiological evaluation of the baby food formulae	56
4.6.1 Total plate count (T.P.C)	56
4.6.2 Detection of coliform group	56
4.6.3 Detection of yeast and molds	56
4.7 Organoleptic evaluation	58
4.8 Stätistical analysis	58
Results and Discussion	59
5.1 Chemical composition of ungerminated, germinated and	59
extruded materials	
5.2 Mineral content of ungerminated, germinated and extruded	62
materials	
5.3 Effect of germination and extrusion on anti-nutritional factors	65
5.4 Amino acids content of extruded materials and dried skimmed	66
milk	

5.

	Page
5.5 Effect of extrusion-cooking on physical characteristics	68
5.5.1 Effect of extrusion-cooking on expansion ratio	68
5.5.2 Effect of extrusion-cooking on water absorption index (WAI)	71
5.5.3 Effect of extrusion-cooking on water solubility index (WSI)	72
5.5.4 Effect of extrusion-cooking on specific weight	73
5.6 Preparation of baby food formulae	73
5.7 Evaluation of baby food formulae	84
5.7.1 Chemical evaluation of baby food formulae	84
5.7.2 Physical characteristics of baby food formulae	89
5.7.3 <i>In-vitro</i> protein digestability	90
5.7.4 Meal preparation of baby food formulae for children feeding	92
5.7.5 Microbiological evaluation of baby food formulae	94
5.7.6 Organoleptic evaluation	95
5.7.7 Economic evaluation of the produced baby food formulae	97
6. Summary	99
7. References	103
8. Arabic summary.	105

List of Tables

Table	Table Title	Page
No.		No.
1	The recommended daily allowances for American health infant and children	30
2	Requirements of essential amino acids for infant and children	32
3	Composition of formulated protein rich food mixtures	45
4	Chemical composition and caloric value of ungerminated, germinated and extruded materials	60
5	Mineral contents of ungerminated, germinated and extruded materials	63
6	Effect of processing on anti-nutritional factors of the selected materials	65
7	Amino acid contents of extruded materials and skimmed milk	67
8	Physical characteristics of unextruded and extruded materials	69
9	Essential amino acids composition of the selected materials compared with FAO provisional pattern of children	74
10	Amino acid score of the selected materials (percentage of adequacy)	76
11	Composition of formulated baby food formula No.1 (S.G.M) and contents of four critical essential amino acids compared with FAO pattern for children (2-5 years)	78
12	Composition of formulated baby food formula No. 2 (S. R.M) and contents of four critical essential amino acids compared with FAO pattern for children (2-5y)	79
13	Composition of formulated baby food formula No. 3 (S.G.R.M) and contents of four critical essential amino acids compared with FAO pattern for children (2-5 y)	80
14	Composition of formulated baby food formula No. 4 (S.G.R.L.M) and contents of four critical essential amino acids compared with FAO pattern for children (2-5 y)	81

Γable	Table Title	Page
No.		No.
15	Composition of formulated baby food formula No. 5 (S.G.L.M) and contents of four critical essential amino acids compared with FAO pattern for children	82
16	(2-5 y) Composition of formulated baby food formula No. 6 (S.R.L.M) and contents of four critical essential amino acids compared with FAO pattern for children (2-5 y)	83
17	Chemical composition and caloric value of baby food formulae	85
18	Mineral contents of baby food formulae	86
19	Amino acid contents of baby food formulae	88
20	Physical characteristics of baby food formulae	89
21	In vitro protein digestability of baby food formulae	91
22	Nutrients in 100gm of baby food formulae compared with the daily recommended requirements for children	93
23	Microbiological assay of baby food formulae	94
24	Mean values for organoleptic characteristics of baby food formulae	96
25	Economic evaluation of the produced baby food	98

.