

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

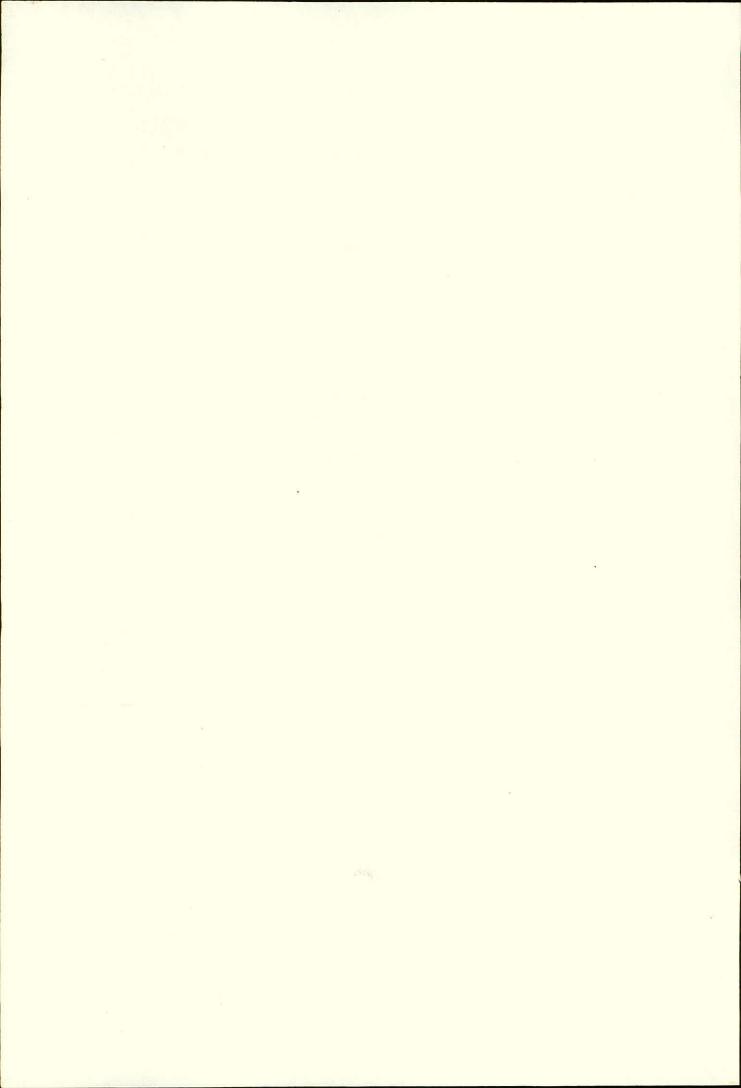
To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

NONLINEAR BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED BY FIBER REINFORCED POLYMERS:

AN EXPERIMENTAL AND ANALYTICAL STUDY

by


ALAA EL-DIN MOHAMED ALI YOUSEF SHARKAWI Assistant lecturer, Civil Engineering Department, Faculty of Engineering, Tanta University

> A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSPHY in

CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT June 2000

13

NONLINEAR BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED BY FIBER REINFORCED POLYMERS:

AN EXPERIMENTAL AND ANALYTICAL STUDY

by

ALAA EL-DIN MOHAMED ALI YOUSEF SHARKAWI Assistant lecturer, Civil Engineering Department, Faculty of Engineering, Tanta University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSPHY
in

CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

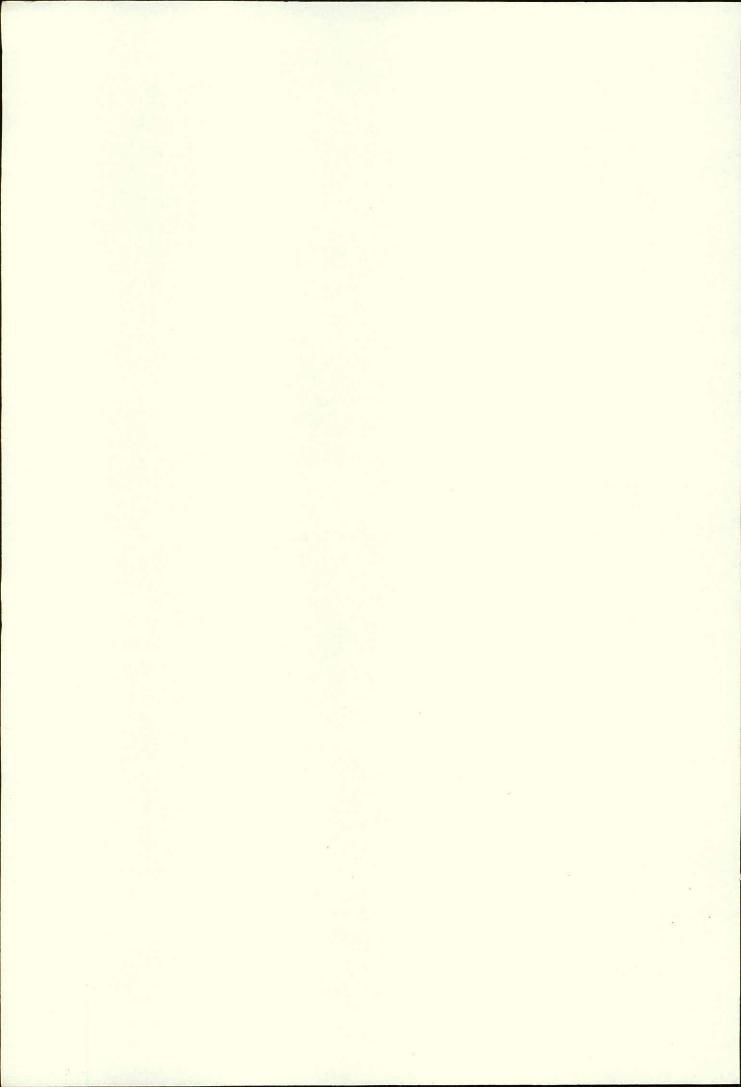
Under the Supervision of

Prof. YEHIA A. BAHEI-EL-DIN

Professor of Structural Analysis and Mechanics

Department of Structural Engineering

Faculty of Engineering, Cairo University


Prof. NABIL A. B. YEHIA

Professor of Concrete Structures

Department of Structural Engineering

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT June 2000

NONLINEAR BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED BY FIBER REINFORCED POLYMERS:

AN EXPERIMENTAL AND ANALYTICAL STUDY

by

ALAA EL-DIN MOHAMED ALI YOUSEF SHARKAWI Assistant lecturer, Civil Engineering Department, Faculty of Engineering, Tanta University

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSPHY

in CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

Approved by the Examining Committee:

Prof. Dr. YEHIA A. BAHEI-EL-DIN

Prof. Dr. NABIL A. B. YEHIA

Prof. Dr. ASHRAF H. EL-ZANATI

Mawall

Prof. Dr. OMAR A. MOUSA EL-NAWAWY

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
June 2000

CONTENTS

LIST OF TABLES	Page viii
LIST OF FIGURES	x
LIST OF SYMOBOLS AND ABREVIATIONS	xxiv
ACKNOWLEDGEMENT	xxvii
ABSTRACT	xxviii
1. INTRODUCTION	1
1.1 Background1.2 Research Goals1.3 Scope of work	1 2 3
2. LITERATURE REVIEW	7
1.1 Introduction	7
1.2 Flexural Strengthening of R.C Beams Using Externally Bondo Steel Plates	ed 8
2.2.1 Experimental Research Work 2.2.2 Field Applications	8 11
1.3 Flexural Strengthening of R.C Beams Using Externally Bonds Fiber Reinforced Plastic (FRP) Plates	ed 12
2.3.1Experimental Research Work	13
2.3.1.1 Effect of the Bonding Adhesive Characteristics2.3.1.2 Effect of Strengthening FRP Sheet Characteristics2.3.1.3 Effect of Strengthened Beam Characteristics2.3.1.4 Effect of Test Setup and Loading Configuration	14 15 23 27
2.3.2Analytical Research Work	29
2.3.2.1 Using Iterative Analytical Methods2.3.2.2 Using Closed Form Solutions2.3.2.3 Using Finite Element Method	30 33 35

	Page
2.3.3 Field Applications	39
2.4 Summary and Conclusions	40
3. DEFECTS OF REINFORCED CONCRETE BEAMS (CAUSES, EVALUATION AND TECHNIQUES OF STRENGTHENING)	, 42
3.1 Introduction3.2 Definitions3.3 Constituents of Reinforced Concrete	42 44 44
3.3.1 Concrete	45
3.3.1.1 Cement Paste 3.3.1.2 Aggregates. 3.3.1.3 Admixture	45 46 47
3.3.2 Reinforcing Steel	47
3.4 Reinforced Concrete Structures Assessment Plan	48
3.4.1 Goals of Assessment Plan3.4.2 Steps of an Assessment Plan	48 49
3.5 Types of Common Defects in R.C. Structural Elements	51
3.5.1 Serviceability Defects	51
 3.5.1.1 Unaccepted Cracks 3.5.1.2 Deterioration 3.5.1.3 Excessive Deformation 3.5.1.4 Differential Settlement 3.5.1.5 Leakage 	51 52 55 55 56
3.5.2 Safety Defects	56
3.6 Common Causes of Defects in R.C. Structural Element	56
3.6.1 Causes Related to Inadequate Strength	58
3.6.1.1 Design Deficiencies3.6.1.2 Construction Deficiencies3.6.1.3. Foundation Deficiencies	58 59 59

	Page
3.6.1.4 Material Deficiencies	59
3.6.1.5 Maintenance Deficiencies	60
3.6.1.6 Misuse	60
3.6.2 Causes Related to Damage	60
3.6.2.1 Overloading	60
3.6.2.2 Restraint to Volume Changes in Concrete	60
3.6.2.3 Ground Movement	61
3.6.2.4 Water and Dampness	62
3.6.2.5 Fire	62
3.6.3 Causes Related to Deterioration	62
3.6.3.1 Freeze-Thaw Disintegration	62
3.6.3.2 Erosion	63
3.6.3.3 Corrosion of Reinforcement	66
3.6.3.4 Alkali-Aggregate Reaction	68
3.6.3.5 Sulphates Attack	69
3.6.3.6 Acid Attack	69
3.6.3.7 Atmospheric Pollution	69
3.7 Structural Evaluation of Reinforced Concrete Structures	69
3.7.1 Steps of Evaluation of Reinforced Concrete Structures	70
3.7.2 Testing Methods for Evaluation	70
3.7.3.Details of the More Usual Diagnostic Test Methods	71
3.7.3.1 Visual Investigation	71
3.7.3.2 Locating Internal Defect Investigation	73
3.7.3.3 Deterioration Investigation	74
3.7.3.4 Concrete Strength Investigation	75
3.8 Strengthening Techniques	77
3.8.1 Design of Strengthening	77
3.8.2 Different Methods for Flexural Strengthening	77
3.8.2.1 Section Enlargement (Jacket and collar)	78
3.8.2.2 External Post-Tensioning	81
3.8.2.3 Supplemental Support and Span Length Shortening	82
3.8.2.4 Externally Bonded Reinforcement.	84

4.OVERVIEW OF COMPOSITE MATERIALS AND LAMINATES	S 88
4.1 Introduction4.2 Types and Constituents of Composite Materials	88 89
4.2.1 What are the composite materials?4.2.2 Constituents of Composite Materials	89 90
4.2.2.1 Matrix Materials 4.2.2.2 Reinforcing Materials	90 94
4.2.3 Advantages and Disadvantages of Composite Materials	99
4.2.3.1 General Advantages of Composites4.2.3.2 General Disadvantages of Composites	100 100
4.3 Classification of Composite Materials	101
4.3.1 Particulate Composites 4.3.2 Fibrous Composites	102 102
4.4 Applications of Composite Materials4.5 Fabrication Methods of Composite Materials	105 107
4.5.1 Fabrication of Thermosetting Resin Matrix Composites 4.5.2 Manufacturing Methods of Laminated Fiber-Reinforced	108
Composites	109
4.6 Macromechanical behavior of laminated fiber-reinforced composites	113
4.6.1 Macromechanical Behavior of a Fiber Reinforced Lamina 4.6.2 Macromechanical Behavior of Fiber Reinforced Laminate	116 123
4.6.2 .1 Stress-strain Behavior of Every an Individual Lamina of a Laminate4.6.2 .2 Through the Thickness Variation of Stress and Strain	123
of the Laminate 4.6.2.3 Resultant Forces and Moments	124 126

Page