

Comparative Study between the Effects of Intravenous or Intrathecal Dexmedetomidine on Characteristics of Bupivacaine Spinal Block in Lower Limb Orthopedic Surgeries

Thesis

Submitted for Partial Fulfillment of the MD Degree in *Anesthesiology*

By Joseph Sobhy Yacoub Halaka M.B., B.Ch, M.Sc

Supervised By

Prof. Dr. Mervat Mohammed Marzouk

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain-Shams University

Prof. Dr. Fahmy Saad Latif Eskander

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain-Shams University

Dr. Eman Mohammed Kamal Abo-saif

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain-Shams University

> Ain Shams University Faculty of Medicine 2018

First, thanks are all due to **GOD** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr.**Mervat Mohammed Marzouk, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Prof. Dr. Fahmy Saad Latif Eskander**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, for adding a lot to this work by his experience and for his keen supervision.

I would like to direct my special thanks to **Dr. Eman** Mohammed Kamal Abo-saif, Assistant professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, for her invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my wife for her unlimited help and support.

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i
List of Figures	ii
List of Tables	V
Introduction	1
Aim of The Work	3
Review of Literature	4
Chapter 1: Spinal Anesthesia	4
Chapter 2: Pharmacology of Bupivacaine	25
Chapter 3: Pharmacology of Dexmedetomidine	44
Patients and Methods	61
Results	68
Discussion	85
Summary	94
References	99
Arabic Summary	

List of Abbreviations

ANOVA : A one-way analysis of variance

cAMP : Cyclic adenosine monophosphate

CNS : Nervous system

CSF : Cerebrospinal fluid

F : ANOVA

FDA : Food and Drug Administration

GDP : Guanyl di-phosphate

GTP : Guanyl tri-phosphate

HR : Heart rate

ICU : Intensive care unit

LSD : Least Significant Difference

MAP : Mean blood pressure

Mg : Magnesium sulfate

PACU : Post Anesthesia Care Unit

PDPH : Post-dural puncture headache

x2 : Chi-square test

List of Figures

Fig.	Title	Page
1	Longitudinal section of spinal cord and covering	5
2	Spinal ligaments, hold the spines together	6
3	Cross section of spinal cord within the vertebral canal	7
4	Spinal needle poisoned in subarachnoid space	8
5	Circulation of cerebrospinal fluid	9
6	Common tips designs for spinal needles	13
7	Spinal block: sitting position, lateral view	14
8	Spinal block: Prone position	15
9	Spinal block: Lateral position	16
10	Injection sites for spinal and epidural anesthesia	17
11	Spinal anesthesia, midline and paramedian approach	19
12	Bupivacaine HCL 0.5 %	27
13	Local anesthetic chemical structure	29
14	Mechanism of Action of Bupivacaine	31
15	Intralipid 20%	43
16	Dexmedetomidine	44
17	G-protein coupled receptors	45
18	Bar chart between groups according to baseline HR and MAP	69
19	Line shows the extent of the difference over the periods through systolic blood pressure the between group	71
20	Line shows the extent of the difference over the periods through mean arterial blood pressure the between group	72

List of Figures (Cont.)

Fig.	Title	Page
21	Line shows the extent of the difference over	74
	the periods through heart rate the between	
	group	
22	Bar chart between groups according to spinal	76
	block	
23	Bar chart between groups according to	77
	regression time to S1 level regression to	
	bromage 0 (min)	
24	Bar chart between groups according to VAS	80
25	Bar chart between groups according to mean	81
	VAS score	
26	Line shows the extent of the difference over	82
	the periods through mean sedation score the	
	between group	
27	Bar chart between groups according to mean	83
	sedation score	
28	Bar chart between groups according to	84
	adverse effects	

List of tables

Table	Title	Page
1	Comparison between groups according	68
	to demographic data.	
2	Comparison between groups according	69
	to baseline HR and MAP	
3	Comparison between groups according	70
	to systolic blood pressure (mmHg)	
4	Comparison between groups according	71
	to mean arterial blood pressure (mmHg)	
5	Comparison between groups according	73
	to heart rate (Beat/min)	
6	Comparison between groups according	75
	to spinal block	
7	Comparison between groups according	76
	to regression time to S1 level and	
	Bromage 0 (min)	
8	Comparison between groups according	78
	to time to first analgesic request (min)	
9	Comparison between groups according	80
	to visual analogue pain scale (VAS)	
10	Comparison between groups according	81
	to Mean VAS score	
11	Comparison between groups according	82
	to sedation score	
12	Comparison between groups according	83
	to mean sedation score	
13	Comparison between groups according	84
	to adverse effects	

Comparative Study between the Effects of Intravenous or Intrathecal Dexmedetomidine on Characteristics of Bupivacaine Spinal Block in Lower Limb Orthopedic Surgeries

Mervat M Marzouk, Fahmy S Eskander, Eman M Abo-saif, Joseph S Halaka

Department of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain-Shams University

Corresponding author: Joseph S Halaka; Mobile: 01224887768; Email: jojo_fight@yahoo.com

ABSTRACT

Background: Lower limb orthopedic surgeries performed under spinal anesthesia have the advantage of having rapid onset, maintaining spontaneous breathing, relaxing the necessary muscles for surgery, and cost effectiveness. It also has the advantage of being free from the risks of intubation and pulmonary aspiration. Aim of the Work: This study was between designed compare intrathecal versus spinal block dexmedetomidine when added to bupivacaine on characteristics in patients undergoing lower limb orthopedic surgery regarding, onset and duration of sensory and motor block, quality of intraoperative anesthesia, postoperative analgesia, level of sedation, and adverse effects on patient hemodynamics. Patients and Methods: Following approval of our departmental ethical committee and obtaining informed consent, sixty patients scheduled for lower limb orthopedic surgeries under spinal anesthesia were enrolled in this prospective randomized comparative study. **Results:** *******. **Conclusion:** Both intrathecal and intravenous dexmedetomidine were safe adjuvants to bupivacaine spinal anesthesia. Intrathecal dexmedetomidine is superior adjuvant to spinal bupivacaine when compared to intravenous dexmedetomidine. It provides more stable hemodynamics, greater augmentation to sensory and motor block, better quality of perioperative analgesia and lesser overall side effects. Intravenous dexmedetomidine provides higher level of sedation during the intra-operative period. Recommendations: Further studies on a larger scale of patients are required to confirm the results obtained by this work.

Key words: dexmedetromidine, bupivacaine spinal block, lower limb, orthopedic surgeries

Introduction

Lower abdominal and lower limb surgeries may be performed under local, regional (spinal or epidural) or general anesthesia, but neuraxial blockade is the preferred mode of anesthesia. Spinal block is still the first choice because of its rapid onset, superior blockade, lower risk of infection as from catheter in situ, less failure rates and costeffectiveness, but has the drawbacks of shorter duration of block and lack of postoperative analgesia (Shukla et al., 2011).

Spinal anesthesia has the advantage of being able to maintain spontaneous breathing as well as relaxing the necessary muscles for surgery. It also has the advantage of being free from the risks of intubation and pulmonary aspiration (Shukla et al., 2011).

In recent years, use of intrathecal adjuvants has gained popularity with the aim of prolonging the duration of block, better success rate, patient satisfaction, decreased resource utilization compared with general anesthesia and faster recovery. Adequate pain management is essential to facilitate rehabilitation and accelerate functional recovery, enabling patients to return to their normal activity more quickly. The quality of the spinal anesthesia has been reported to be improved by the addition of opioids (such as morphine, fentanyl and sufentanil) and other drugs [such as dexmedetomidine (DXM), clonidine, magnesium sulfate (Mg), neostigmine, ketamine and midazolam], but no drug to inhibit nociception is without associated adverse effects (Chatrath et al., 2014).

Bupivacaine is a drug with long lasting local anesthetic effect, in neuraxial anesthesia, provides an effective and safe anesthesia (Coskuner et al., 2007).

Recently, Alpha 2-adrenoceptor agonists are being increasingly used in anesthesia and critical care as they not only decrease sympathetic tone and attenuate the stress responses to anesthesia and surgery; but also cause sedation and analgesia; they are also used as adjuvants during regional anesthesia (Bajwa and Kulshrestha, 2013).

Dexmedetomidine is the most recent agent in this group approved by FDA in 1999 for use in human for analgesia and sedation (Kanazi et al., 2006).

Dexmedetomidine was studied as an intrathecal adjunct to bupivacaine spinal block in different surgical procedures. These studies showed that intrathecal addition of dexmedetomidine to bupivacaine produced shorter onset and longer duration of sensory, motor block, enhanced postoperative analgesia and sedation without serious side effects in different surgical procedures (Niu et al., 2013).

Many studies also examined the effect of intravenous Dexmedetomidine as an adjuvant to spinal block in a variety of surgical procedures. These studies showed that intravenous dexmedetomidine can prolong the duration of sensory and motor blocks as well as the time to first analgesic request of spinal anesthesia (Upadhyay et al., *2015*).

Aim of the Work

This study was designed to compare between intrathecal versus intravenous dexmedetomidine when added to bupivacaine on spinal block characteristics in patients undergoing lower limb orthopedic surgery regarding, onset and duration of sensory and motor block, quality of intra-operative anesthesia and adverse effects on patient hemodynamics postoperative analgesia, level of sedation,.

Spinal Anesthesia

Introduction:

all regional anesthetic techniques, most frequently anesthesia is the one anesthesiologists. Lumbar or subarachnoid anesthesia is other names for this nerve-blocking procedure performed close to the spine. Spinal anesthesia is distinguished by its ease of performance, rapid onset of action, excellent anesthetic efficacy and motor blockade. Additionally, it is free from systemic toxicity. Spinal anesthesia is especially suitable for all interventions in the lower and middle abdomen, for operations of the hip joint, lower extremities, prostate and bladder as well as of the peripheral vasculature. Increasingly, gynecological and obstetric procedures – especially cesarean sections – are performed under spinal anesthesia. Patients benefit from spinal anesthesia because it has little effect on physiological respiratory parameters, functional residual capacity, shunt volumes or respiratory drive. The rate of postoperative pneumonia or respiratory insufficiency is lower than after intubation anesthesia (Mulroy, 2009).

ANATOMY:

The spinal canal has a protective sheath composed of three layers. From the outside to the inside they are: Dura mater, arachnoid and pia mater. The potential space between the dura and arachnoid is called subdural space. The cerebrospinal fluid (CSF) flows between the arachnoid and pia mater in the space called subarachnoid space. The spinal cord begins cranially at the foramen magnum, as a continuation of the medulla oblongata. It terminates caudally at the conus medullaris, which in the adult corresponds to the level of the lower border of L1, and in the young child to the upper border of L3. From this end, a prolongation of the pia mater called the filum terminale attaches the spinal cord to the coccyx. The dural sac itself ends at the level of the second sacral vertebra (*Snell*, *2012*).

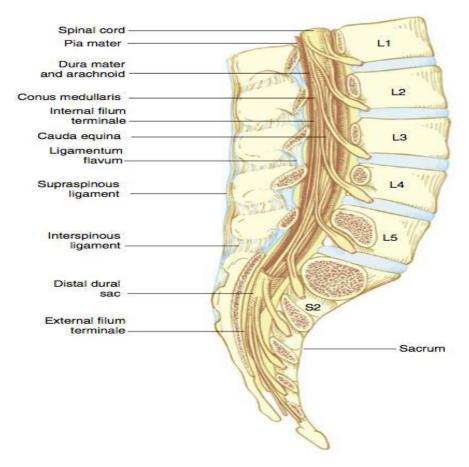


Fig. (1): Longitudinal section of spinal cord and covering meninges (www.profelis.org)

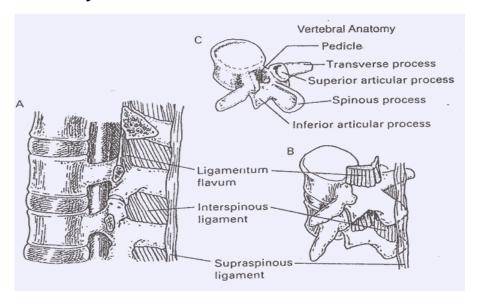


Fig. (2): Spinal ligaments, hold the spines together (Netter,2006)

The spinal cord is composed of a core of gray matter surrounded by white matter. The gray matter on cross section has an H shape, with ventral (motor) and dorsal (sensory) horns. The white matter is described as having anterior, lateral and posterior white columns. There are 31 pairs of spinal nerves; each one being formed by two roots, a ventral or motor root and a dorsal or sensory root. The dorsal root has the dorsal root ganglion. Because the spinal cord of an adult is shorter than the vertebral column, the spinal nerves descend a variable distance in the spinal canal before exiting through the intervertebral foramen. (*Bernards*, 2017).

The most distal lumbar and sacral nerves travel the longest distance inside the spinal canal, forming what is known as the cauda equine. As the spinal nerve pierces the dural sac, it draws with it a dural sleeve. The spinal nerves

exit through the inter-vertebral foramen, formed between two vertebrae. There are 8 cervical nerves. The first cervical nerve exits through the occipital bone and C1, the 8th cervical nerve exits between C7 and T1. Distal to T1 each spinal nerve exits below the corresponding vertebra. The vertebral column has a series of curvatures in the anteroposterior plane. The cervical and lumbar curvatures have an anterior convexity (lordosis) and the thoracic and sacral have posterior convexity (kyphosis). These curvatures play a role in the spread of the local anesthetic solution (*Bernards*, 2017).

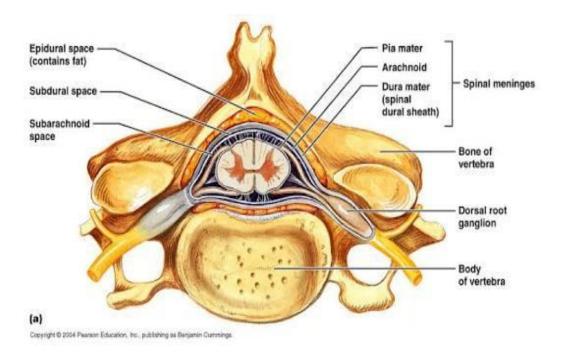


Fig. (3): Cross section of spinal cord within the vertebral canal (www.profelis.org)