

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار %٤٠-٢٠ منوية ورطوية نسبية من ٢٥-١٥ في درجة حرارة من ٢٥-١٥ منوية ورطوية نسبية من ٢٥-١٠ ثق To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائــــق الاصلبــة تالفـة

بالرسالة صفحات لم ترد بالاصل

Arrangement of Cables in Cable Stayed Bridges

By

MOHAMED EL-TANTAWY EL-MADAWY AWAD

B.Sc. (Honor) in Civil Engineering, Mansoura University, 2000

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science

In

Structural Engineering

SUPERVISORS

Prof. Dr. Youssef Ibrahim Agag

Structural Engineering Department
Faculty of Engineering
Mansoura University

Associate Prof. Dr. Mohamed Naguib Abou El-saad

Structural Engineering Department Faculty of Engineering Mansoura University

Assistant Prof. Dr. Shaaban Ibrahim Selim

Structural Engineering Department
Faculty of Engineering
Mansoura University

2005

200

Arrangement of Cables in Cable Stayed Bridges

Bv

MOHAMED EL-TANTAWY EL-MADAWY AWAD

B.Sc. (Honor) in Civil Engineering, Mansoura University, 2000

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science

In

Structural Engineering

SUPERVISORS

Prof. Dr. Youssef Ibrahim Agag

Structural Engineering Department Faculty of Engineering Mansoura University

Associate Prof. Dr. Mohamed Naguib Abou El-saad

Structural Engineering Department
Faculty of Engineering
Mansoura University

Assistant Prof. Dr. Shaaban Ibrahim Selim

Structural Engineering Department
Faculty of Engineering
Mansoura University

2005

قالول سبعانه الاجلح لنا إلاما وسبعانه والأما والأما وسبعانه والما والعليم المحليل العليم العل

المنابع المنابع المنابع

البقرة آية: (٣٢)

Thesis Title

: ARRANGEMENT OF CABLES IN CABLE STAYED BRIDGES

Candidate Name: Mohamed EL-tantawy EL-madawy Awad.

Supervisors:

Name	Position	Signature
1- Dr. Youssef I. Agag	Professor of Structural Eng., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Hawl Agag
2- Dr. Mohamed N. Abou El-saad	Associate Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	M.Naguil
3- Dr. Shaaban I. Selim	Assistant Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	SL

Thesis Title

: ARRANGEMENT OF CABLES IN CABLE STAYED BRIDGES

Candidate Name: Mohamed EL-tantawy EL-madawy Awad.

Supervisors:

Name	Position	Signature
1- Dr. Youssef I. Agag	Professor of Structural Eng., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	young Agag
2- Dr. Mohamed N. Abou El-saad	Associate Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	M. Naguib
3- Dr. Shaaban I. Selim	Assistant Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Sh

Examination committee:

Name	Position	Signature
1- Dr. Youssef Ibrahim Agag	Professor of Structural Eng., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Yamy Agog
2- Dr. Mohamed Ibrahim El-naggar	Professor of Structural Eng., Structural Engineering Dept., Faculty of Engineering, Alexandria University.	
3- Dr. Nabil Said Mahmoud	Professor of Structural Eng., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Mari
4- Dr. Mohamed N. Abou El-saad	Associate Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	M. Naguib

CONTENTS

${f P}$	age
ACKNOWLEDGÉMENT	
ABSTRACT	vi
CHAPTER 1: INTRODUCTION	
1.1 GENERAL	1
1.2 OBJECTIVE OF THE STUDY	2
1.3 OUTLINE OF THE THESIS	2
CHAPTER 2: LITRATURE REVIEW OF CABLE-STAYED BRIDGE	ES
2.1 SHORT HISTORICAL REMARKS	4
2.1.1 Dischinger and German Design (Sudden Rise of Cable-Stayed Bridge)	5
2.1.2 Recent World Applications	7
2.1.2.1 Germany and cable-stayed bridges	7
2.1.2.2 United States and cable-stayed bridges	8
2.1.2.3 Cable-stayed bridges in Japan	9
2.1.2.4 Cable-stayed bridges in Egypt	. 10
2.1.2.5 The longest cable-stayed bridges	. 11
2.2 COMPONENT AND CONFIGURATION OF CABLE-STAYED BRIDGES	12
2.2.1 Stay Cable Arrangements	12
2.2.1.1 Transverse cable arrangements	. 13
2.2.1.2 Longitudinal cable arrangements	14
2.2.2 Girder cross section types	15
2.2.2.1 Solid web girders	16
2.2.2.2 Stiffening truss	16
2.2.2.3 Reinforced and prestressed concrete girders	. 16
2.2.3 Tower types	17
2.2.4 Number and spacing of cables (multi-stay system)	19
2.3 LITERATURE REVIEW	20
2.3.1 Static Analysis of Cable-Staved Bridge	20

2.3.2 Dynamic Analysis of Cable-Stayed Bridges	. 23
2.4 STRUCTURAL ADVANTAGES OF THE CABLE-STAYED BRIDGE	25
CHAPTER 3: STATIC ANALYSIS	
3.1 INTRODUCTION	. 27
3.2 MATHEMATICAL FORMULATION	. 28
3.3 MINIMIZATION TECHNIQUES	29
3.4 EXPRESSIONS FOR THE <i>TPE</i>	32
3.5 NUMERICAL ILL-CONDITIONING, SCALING AND CONVERGENCE	. 37
3.5.1 Condition Number and Sources of Ill-conditioning	37
3.5.2 Scaling and Ill-conditioning of the TPE surface	. 38
3.5.3 Convergence Criteria (Termination Procedures)	40
3.6 SUMMARY OF THE ITERATIVE PROCEDURES	40
CHAPTER 4: DYNAMIC ANALYSIS	
4.1 INTRODUCTION	. 46
4.2 TIME DOMAIN ANALYSIS	46
4.3 IMPLICIT TIME INTEGRATION METHODS FOR NONLINEAR DYNAMIC ANALYSIS	. 47
4.3.1 Linear change of acceleration method	. 47
4.3.2 Wilson θ - method	. 48
4.3.3 Constant acceleration method	. 48
4.3.4 Newmark β- method	. 48
4.3.5 Incremental equation of motion	49
4.4 GENERALIZED METHOD OF MINIMIZING TPDE	
4.4.1 Assumptions	. 50
4.4.2 The total potential energy at time $(t + \Delta t)$	51
4.4.2.1 Total potential energy, $TPE = W\{x\}$	54
4.4.2.2 Total potential energy dissipation by structural damping, $W\{\dot{x}\}$	58
4.4.2.3 Total potential energy of inertia forces, $W\{\ddot{x}\}$	59
4.4.2.4 Total potential work of wind, $W\{V\}$. 60
4.4.2.5 TPE of inertia forces due to support movements, $W\{\ddot{u}\}$	60
4.4.2.6 TPE of independent dynamic forces, $W\{P\}$	61

4.5 CONVERGENCE AND SCALING	62
4.6 STABILITY AND ACCURACY VERSUS THE MAGNITUDE OF THE TIME STEP	62
CHAPTER 5: STATIC RESPONSE ANALYSIS	
5.1 INTRODUCTION	64
5.2 DESCRIPTION OF THE CASE STUDY BRIDGES	
5.3 ANALYSIS CONSIDERATIONS	65
5.4 INVESTIGATION OF THE FACTORS AFFECTING THE RESPONSE OF BRIDGE	65
5.4.1 Displacement Along The pylon height	65
5.4.2 Displacements along the Floor Beam	66
5.4.3 Displacement of cable Joint Number 2	67
5.4.4 Normal Force along the Pylon Height	68
5.4.5 Bending Moment along the Pylons Height	
5.4.6 Normal Force along the Floor Beam	7.0
5.4.7 Bending Moment along the Floor Beam	71
5.4.8 Final Tension Forces in the Outer Cable	72
CITA DEED C. DECDONICE ANIAT VOIC OF CEE ANY CEATE WITH	.DO
CHAPTER 6: RESPONSE ANALYSIS OF STEADY STATE WIN LOAD	(D
6.1 INTRODUCTION	157
6.2 DESCRIPTION OF THE CASE STUDY BRIDGES	
6.3 ANALYSIS CONSIDERATIONS	
6.3.1 Calculation of the Wind Forces	158
6.3.2 Calculation of the Natural Frequencies	
6.3.3 Calculation of the Damping	160
6.4 CASES OF STUDY	
6.5 RESULTS AND DISCUSSIONS	162
6.5.1 Static Analysis due to Self weight and Longitudinal Wind	
6.5.1.1 Displacement of cables at joints (2) and (13)	162
6.5.1.2 Lateral sway at top of the pylon	
6.5.1.3 Deflection at mid of the interior span	
6.5.1.4 Normal force and bending moment in the tower at lower end of members (1), (2)	

6.5.1.5 Normal force and bending moment at mid of the interior span 16
6.5.1.6 Final Tension Force in the Exterior Cables (1), (2)
6.5.2 Time Domain Dynamic Analysis Due to Steady State Longitudinal Wind 16
6.5.2.1 Displacement of Cables at Joints (2) and (13)
6.5.2.2 Lateral sway at top of the pylon
6.5.2.3 Displacement at Mid of the Interior Span
6.5.2.4 Normal Force in the Tower at lower End of Members (1), (2)16
6.5.2.5 Bending Moment in the Tower at the Lower End of Members (1), (2)
6.5.2.6 Normal Force at mid of the interior span
6.5.2.7 Bending Moment at mid of the interior span
6.5.2.8 Final tension Force in the Exterior Cables (1), (2)
CHAPTER 7: SUMMARY AND CONCLUSION
7.1 SUMMARY21
7.2 CONCLUSION21
7.2,1 The Static Analysis under Self Weight and Equivalent Distributed
Traffic Loads
7.2.2 The Analysis Due to Self Weight and longitudinal Wind Load
7.2.2.1 Static analysis
7.2.2.2 Dynamic analysis
REFERENCES

ARABIC SUMMARY

Acknowledgement

I would like to express my gratitude and thanks to Allah for his help and grant to complete this work.

The author wishes to express his deepest gratitude and most appreciation to **Prof. Dr. Youssef Ibrahim Agag**, for his guidance, helpfulness, encouragement and excellent supervision.

The author is also extremely indebted to Assoc. Prof. Dr. Mohamed Naguib Abou El-saad, for his valuable advices and his continuous assistance that helped me a lot to complete this work.

Deep appreciation is extended to Assis. Prof. Dr. Shaaban Ibrahim selim, for his great concern and valuable suggestions throughout the course of this work.

Finally, the words stand helpless and can not express the appreciation from the author to his parents, wife, daughter, brother and sister for their sacrifice and fruitful care.