

Development of an Analytical Method for Determination of Highly Polar Pesticide Residues In some Food Products

Thesis Submitted

By

Mostafa Soliman Abd-el-Ghaffar Abd-el-Megid Abd-ellah
B. Sc. in Chemistry
Faculty of Science, Ain Shams University
2011

In the Partial Fulfillment for the Requirement of the Master Degree in Chemistry

Chemistry Department, Faculty of Science Ain Shams University

Under Supervision of

Prof.Dr. Mohamed Mahmoud Mohamed Abo-Aly

Professor, Department of inorganic Chemistry, Faculty of science, Ain shams University

Dr. Emad Ramadan Mohamed Attallah

Professor, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center

Approval sheet

Development of an Analytical Method for Determination of Highly Polar Pesticide Residues In some Food Products

Thesis submitted by

Mostafa Soliman Abd-el-Ghaffar Abd-el-Megid Abd-ellah In the Partial Fulfillment for the Requirement of the Master Degree in Chemistry

This thesis has been approved by:

• Prof. Dr. Mohamed Mahmoud Mohamed Abo-Aly
Professor, Department of Chemistry, Faculty of science, Ain shams University Signature:
• Prof. Dr. Emad Ramadan Mohamed Attallah
Professor, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center Signature:
Prof. Dr. Ahmed Mahmoud El-Sayed Dahr
Professor of analytical chemistry, Nuclear Materials Authority Signature:
• Prof Dr. Emad Hassan Mohamed Borai
Professor of analytical chemistry, Egyptian atomic energy authority Signature:
Head of Chemistry Department

Prof Dr. Ibrahim Hosseini Ali Badr

Acknowledgment

I express my thanks to the graceful and merciful God for helping me in this thesis. I wish to express my deep gratitude and thanks to Prof. Dr Mohamed Mahmoud Mohamed Abo-Aly Professor of Chemistry, Faculty of Science, Ain shams University. The door to Prof. Abo-Aly's office was always open whenever I ran into a trouble spot or had a question about my research or writing, this wouldn't work have been completed without his supervision, continuous encouragement and valuable comments.

I also wish to express deep gratitude and thanks to Prof. Dr. Emad Ramadan Mohamed Attallah, Quality Manager at Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, for proposing the point of research and for his great effort and assistance through this study and for revising this thesis and I am gratefully indebted to him for his very valuable comments and great insight. My deep thanks and gratitude are also extended to my friends Dr. Moustapha Nabeel Mohammed and Tawfeek Khedr, for their help through this thesis. My thanks and appreciation goes to all the staff members and technicians of the Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food. My special thanks to my father, mother,

brothers and sister for giving me inspiration, confidence and patience throughout this study.

Mostafa Soliman Abd-el-Ghaffar Abd-el-Megid Abd-ellah

Abstract

Name: Mostafa Soliman Abd-el-Ghaffar Abd-el-Megid Abd-ellah

Title of the thesis: Development of an Analytical Method for Determination of Highly Polar Pesticide Residues In some Food Products.

Position: Chemist

Degree: M.Sc., Faculty of science, Ain Shams University

A new simple, easy, fast and cheap modified QuEChERS procedure for the determination of diquat in potatoes using reversed phase liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in a total run time of 10 was developed. Different sample preparation parameters (pH modifier type, sample size effect, and elevated temperature effect) have been tested and optimized. Potatoes sample was extracted with acetonitrile in presence of ammonium hydroxide at 80 °C. Phase separation was obtained by shaking the extract with magnesium sulfate and sodium chloride and analysis was done using liquid chromatography-tandem mass spectrometry. Matrix-matched standard calculations were applied to compensate for matrix induced suppression in LC-MS/MS determination. The precision and trueness of the method were determined from recovery experiments on

five replicates of spiked blank potatoes samples at 0.01, 0.05 and 0.1 mg/kg. The obtained recoveries ranged from 74 to 110% and their RSD values was <5% for all the concentrations.

Key words: QuEChERS, Diquat, Potato, Reversed phase liquid chromatography, LC-MS/MS.

Supervisors' approval:

•	Prof. Dr.	Mohamed	Ma	hmoud M	Iohamed A	bo-Aly	
	Professor,	Department	of	inorganic	Chemistry,	Faculty	of
	science, Ai	n shams Univ	ersit	y			

Signature:									•
------------	--	--	--	--	--	--	--	--	---

• Prof. Dr. Emad Ramadan Mohamed Attallah

Professor, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center

Signature:																									
------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Head of Chemistry Department Prof Dr. Ibrahim Hosseini Ali Badr

Aim of work

The present study aimed to introduce a sensitive and simple method for the determination of diquat residues in potato that can be used for the routine determination of diquat residues in potato, taking in consideration that the limit of quantification of the developed method must be less than the maximum residue limit of diquat in Egypt.

So, the plan of work was to:

- 1- Optimization of analytical method for determination of diquat in potato using Liquid Chromatography with Tandem Mass spectrometry (LC-MS/MS).
- 2- Validation of the analytical method for determination of diquat in potato.

List of abbreviations

CAC: Codex Alimentarius Commission.

CE: Collision Energy.

Diquat: 1,1'-ethylene-2,2'-bipyridylium dication.

DP: Declustring Potential.

ESI: Electrospray Ionization.

EU: European Union.

EURL-SRM: European Union Reference Laboratory for

Pesticides Requiring Single Residue Methods.

FAO: Food and Agriculture Organization.

GAP: Good Agriculture Practice.

HILIC: Hydrophilic Interaction Liquid Chromatography.

K: Partition coefficient.

 $K_{o/c}$: Desorption constant.

K_{o/w}: octanol/water partition coefficient.

LC-MS/MS: Liquid chromatography tandem mass

spectrometry.

LD50: Median lethal dose.

LiSC: Liquid Separation Cell.

LOQ: Quantification limit.

MRM: Multiple Reaction Monitoring.

PP: polypropylene.

Psi: pound-force per square inch.

Q1: Frist Quadrapole

Q2: Second Quadrapole

QuEChERS: Quick, Easy, Cheap, Effective, Rugged and

Safe method.

QuPPe: Quick Polar Pesticides method.

RSD%: Relative standard deviation.

SPE: Solid Phase Extraction.

US-EPA: United States Environmental Protection Agency.

WHO: World Health Organization.

Contents

Approval Sheet
Acknowledgment
Abstract
Aim of Study
List of abbreviations
Publications
Table of contents
List of figures
List of tables
1.Introduction
1.1 Pesticides
1.2 Diquat
1.2.1 Diquat's synthesis
1.2.2 Diquat's properties and uses
1.2.3 Diquat's log octanol/water (log Kow)4
1.2.4 Diquat's environmental fate
1.2.5 Human health assessment
1.2.5.1 Acute toxicity6
1.2.5.2 Subchronic toxicity
1.2.5.3 Chronic toxicity
1.2.5.4 Lethal dose studies

1.2.6 Maximum residue limits of diquat	10
2. Review of Literature	12
2.1 Analytical methods to determine diquat	12
2.1.1 Capillary electrophoresis	12
2.1.2 Gas chromatography	12
2.1.3 Liquid chromatography	13
2.1.3.1 Ion exchange liquid chromatography	13
2.1.3.2 Hydrophilic interaction liquid chromatogr (HILIC)	
2.1.3.3 Ion pair liquid chromatography	15
2.1.3.4 Liquid Separation cell (LiSC)	18
2.2 Sample preparation techniques	18
3. Materials and method	23
3.1 Apparatus	23
3.2 Reagents	23
3.3 Standard preparation	24
3.4 Spiked Samples preparation	25
3.5 Sample preparation	25
3.6 Instrumentation	25
4. Results and discussion	27
4.1 Mass spectrometry study of diquat:	27
4.1.1 Precursor and product ions optimization	28

4.1.2 Declustering potential Optimization	32
4.2 Optimization of chromatographic conditions	33
4.1.1 Comparison to HILIC column and optimization of flow rate and injection volume	
4.1.2 Paraquat separation	43
4.3 Optimization of sample extraction	46
4.3.1 pH modifiers effect	46
4.3.2 Sample size effect	48
4.3.3 Elevated temperature effect	50
4.4 Method validation	53
4.4.1 Linearity of analytical curves	53
4.4.2 Matrix effect	55
4.4.3 Trueness and precision	55
4.5 Comparison with the QuPPe method	59
5.Summary	60
6. Reference	63
Arabic Summary	ĺ

List of Figures

Fig 1 Diquat synthesis	1
Fig 2 Q1 Scan Mass Spectra showing m/z 183 as the	
dominant precursor ion	28
Fig 3 Product ion spectrum of diquat.	30
Fig 4 Typical chromatograms of 183/157 and 183/130	
diquat transitions at concentration 0.01 mg/kg spiked	
sample	35
Fig 5 Chromatograms of blank potatoes at diquat	
transitions 183/157 and 183/130 respectively.	37
Fig 6 Typical chromatograms of 183/157 (A) and 183/130	
(B) diquat transitions at concentration 0.005 μg/ml level	
calibration on C18 column and 183/157 (C) and 183/130	
(D) diquat transitions on HILIC column at 0.4 mL/min flow	
rate and 5 μL injection volume39	
Fig 7 Paraquat structure43	
Fig 8 Chromatograms of 10 µg/ml paraquat standard and	
blank reagent respectively monitored at 171/77 m/z44	
Fig 9 Calibration curve of diquat in range of 0.005-0.5	
μg/ml	54

List of Tables

Table 1 Information about the three formulations of diquat	
that are commercially distributed in Egypt	3
Table 2 Some LD50 values of diquat provided by U.S.	
national library of medicine.	9
Table 3 The precursor and product ions, DP and CE of	
diquat	32
Table 4 Recoveries of Spiked samples at 0.05 mg/kg using	
different pH modifiers.	47
Table 5 Different sample size recoveries of Spiked samples	
at 0.05 mg/kg.	49
Table 6 Different water bath treatment time recoveries of	
Spiked samples at 0.05 mg/kg.	52
Table 7 Recoveries, means and RSD% for Potatoes Spiked	
samples at 0.01, 0.05 and 0.1 mg/kg	57
Table 8 Comparison between the established method and	
the OuPPe method	