The Role of Diffusion Weighted MRI in the Characterization of Hepato-Cellular Carcinoma

Essay

Submitted for Partial Fulfillment of the Master Degree in Radio-Diagnosis

By

Mostafa Ibrahem Mostafa El-Shafey

M.B.B.Ch.

Faculty of Medicine- Cairo University

Under Supervision of

Prof. Dr. Hanan Mahmoud Hussein Arafa

Professor of Radio-Diagnosis
Faculty of Medicine- Ain-Shams University

Dr. Ahmed Mohamed Hussein

Lecturer of Radio-Diagnosis
Faculty of Medicine- Ain-Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Aeknowledgment

- First and foremost, my deep gratefulness and indebtedness is to Allah, the Most Gracious and the Most Merciful.
- Twish to express my deep gratitude and respect to **Prof Dr. Hanan Arafa**, Professor of Radio-Diagnosis,

 Faculty of Medicine, Ain Shams University, for his valuable advices, continuous encouragement, judicious guidance and kind support at this study.
- Mohamed Hussein, Lecturer of Radio-Diagnosis, Faculty of Medicine, Ain Shams University, for his patience, sincere advice and kind support all through this study.
- I would also like to thank all my collegues who extended to me a helping hand for this work.
- Agstly and not least, I send my deepest love to my parents, wife and my son selim for their care and ever lasting support.

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	V
Abstract	VIII
Introduction	1
Aim of Work	5
Chapter (1): Anatomy of the liver	6
Chapter (2): Physics of MRI	32
Chapter (3): MRI liver techniques	62
Chapter 4: Pathology and manifestations	of DW MRI
in hepatocellular carcinoma	69
Chapter 5: Illustrated cases	88
Summary and conclusion	112
References	115
Arabic summary	

List of Abbreviations

ADC : Apparent diffusion coefficient.

APA : Arterio-portal anastomoses.

BH : Breath hold.

CCA : Cholangiocellular carcinoma.

CT : Computed tomography.

CV : Central venule.

DW: Diffusion weighted.

DW MRI: Diffusion weighted magnetic resonance

imaging.

DWI : Diffusion weighted imaging.

EHE : Epithelioid heamangioendothelioma

EPI: Echo planner imaging.

FFE: Fast field echo.

Fig : Figure.

FLC: Fibrolamellar carcinoma.

FLL: Focal liver lesions.

FS: Fast spin.

FSE: Fast spin echo.

GB : Gall bladder

Gd : Gadolinium.

Flist of Aberrations &

Gd : Gadolinium diethylenetriamine pentaacetic

DTPA acid (hepatocyte-specific contrast agent

taken by hepatocytes and excreted into

biliary system).

GI : Gastrointestinal.

GRAPPA: Generalized auto- calibrating partially

parallel acquisition.

GRE: Gradient recalled echo.

H&E: Hematoxylin and eosin

HA: Hepatic artery.

HCC: Hepatocellular carcinoma.

HCV: Hepatitis C virus.

HMS: Hepatic microvascular subunits.

IVC: Inferior vena cava.

min : Minute.

MR : Magnetic resonance.

MRI : Magnetic resonance imaging.

msec : Millisecond.

NEX: Number of excitations.

NH: Focal nodular hyperplasia.

PSC: Primary sclerosing cholangitis.

PV : Portal vein

RT : Respiratory triggered.

Flist of Aberrations &

SE : Spin echo.

sec : Second.

SGE : Spoiled gradient echo

SI : Signal intensity.

SNR: Signal to noise ratio.

SOR : Standard of reference.

SPAIR : Spectral attenuated inversion recovery (fat

suppression MRI technique).

T : Tesla.

TE: Echo time.

THRIVE: High resolution isotropic volume

examination.

TR : Repetition time.

TSE: Turbo spin echo.

US : Ultrasonography.

VIBE : Volumetric interpolated breath hold

examination.

WIs : Weighted images.

3D : Three dimensional.

List of Tables

Table	Title	Page
2.1	Effect of TR and TE on MR image contrast	39
2.2	Typical TR and TE Values for SE and GRE Sequences	40

List of Figures

Figure	Title	Page
1.1	Hepatic surfaces and relations.	7
1.2	Hepatic surfaces and relations.	7
1.3	Glisson`s capsule.	9
1.4	Segmentation of the liver – Couinaud.	10
1.5	Surgical segments of the liver.	12
1.6	Dissection to show the relations of the	
	hepatic artery, bile duct and portal vein to	1
	each other in the lesser omentum: anterior	
	aspect.	14
1.7	The portal vein and its tributaries.	15
1.8	Arrangement of the hepatic venous	
	territories.	16
1.9	Ligaments of the liver.	18
1.10	The liver lobule.	19
1.11	Portal tract & hepatic artery in porcine	
	liver.	20
1.12	Contiguous hepatic lobules illustrating the	
	interconnecting network of sinusoids	1
	derived from two portal venules.	21
1.13	Vascular cast of the hepatic	
	microvasculature.	23
1.14	Center of a lobule in porcine liver.	
		23

👺 List of Figures 🗷

Figure	Title	Page
1.15 (a,b)	Normal hepatic veins in axial T1 and T2	
	weighted imagess.	25
1.16 (a,b)	Portal vein anatomy in post Gd T1	
	weighted images.	26
1.17	Sagittal MR images of the liver.	28
1.18	Coronal MR image of the liver.	29
1.19	Normal MR Liver signal intensity on axial	
	T1 weighted images.	30
1.20	Normal MR Liver signal intensity on axial	
	T2 weighted images.	31
2.1(a,b)	Basic physics of the MR signal	33
2.2 (a,b,c)	Magnetization relaxation and decay	35
2.3	Diagram shows the signal intensity of	
	various tissues at T1- and T2-weighted	
	imaging	39
2.4	Clinical examples of SE and fast SE	
(a,b,c)	sequences	43
2.5	Schematic illustrates water molecule	
	movement	48
2.6	Gradient acquisition scheme showing the	
	diffusion sensitizing gradients	53
2.7	Axial diffusion-weighted image (b = 50	
	sec/mm2) obtained in a 60-year-old woman	
	shows a signal void within the inferior vena	
	cava	
		55

👺 List of Figures 🗷

Figure	Title	Page
2.8	Transverse breath-hold (BH) versus	
	respiratory-triggered (RT) fat-suppressed	
	single-shot SE echo-planar diffusion	
	acquisition in a 78-year old woman with	
	liver cysts	59
4.1 (a,b)	A 58-year-old man undergoing MRI	
	surveillance for right lobe HCC treated	
	with RFA	70
4.2	Stepwise pathway of carcinogenesis for	
	HCC in cirrhosis	74
4.3	Typical handtocallular agrainama	
(a,b,c,d,e,f)	Typical hepatocellular carcinoma	
4.4	Multiplanar images through the liver in a	
(a,b,c,d,e,f)	patient with hepato-cholangio-carcinoma	
	status post left hepatectomy	83
4.5	Axial MRI images through the liver	
	demonstrating a small simple cyst	
4.6	ROC curve of ADC of benign lesions.	86

Abstract

Differentiating between cancerous tissue and healthy liver parenchyma could represent a challenge with the only conventional Magnetic Resonance (MR) imaging. Diffusion weighted imaging (DWI) exploits different tissue characteristics to conventional Magnetic Resonance Imaging (MRI) sequences that enhance hepatocellular carcinoma (HCC) detection, characterization, and post-treatment evaluation. Detection of HCC is improved by DWI, infact this technology increases conspicuity of lesions that might otherwise not be identified due to obscuration by adjacent vessels or due to low contrast between the lesion and background liver. It is important to remember that DWI combined with contrast-enhanced MRI has higher sensitivity than DWI alone, and that some patients are not eligible for use of contrast on CT and MRI; in these patients DWI has a prominent role. MRI has advanced beyond structural anatomic imaging to now showing pathophysiologic processes. DWI is a promising way to characterize lesions utilizing the inherent contrast within the liver and has the benefit of not requiring contrast injection. DWI improves detection and characterization of HCC. Proposed clinical uses for DWI include: assessing prognosis, predicting response, monitoring response to therapy, and distinguishing tumor recurrence from treatment effect. Ideally, DWI will help risk stratify patients and will participate in prognostic modeling.

Key words: Hepatocellular Carcinoma; Diffusion weighted imaging (DWI); Hepatic carcinogenesis.

Introduction

Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy of adults. It is the sixth most common cancer worldwide and the third most common cause of cancer death. In Egypt, liver cancer forms 11.75% of the malignancies of all digestive organs and 1.68% of the total malignancies. HCC constitutes 70.48% of all liver tumors among Egyptians. HCC represents the main complication of cirrhosis, and shows a growing incidence in Egypt, which may be the result of a shift in the relative importance of hepatitis B virus (HBV) and HCV as primary risk factors, and improvements in screening programs and diagnostic tools.

Although most HCC develop in the background of chronic liver disease, some may occur on a normal liver and usually correspond to specific types, including fibrolamellar HCC (*Hola*, 2015).

The radiological evaluation of HCC is an overall procedure able to provide its accurate diagnosis and prognosis by evaluating both the macroscopic and the microscopic features of the tumor and aspects of the

tumoral tissue, especially the identification of non changes. preneoplastic Therefore, various studies aimed to report the epidemiological, clinical, and histopathological properties of HCC patients eligible for surgical intervention, and those whom able to interact with medical and conventional treatment (Hola, 2015).

A number of imaging techniques are available to detect the presence of lesions, evaluate focal liver lesions, and determine the stage of the disease. They include ultrasound (US), computed tomography (CT), resonance imaging (MRI), magnetic and positron Understanding emission tomography (PET). diagnostic accuracy of imaging methods and how they affect clinical decision making, and ultimately patient outcomes, is a challenge. Imaging techniques may be used alone, in various combinations liver-specific and/or with biomarkers, algorithms, resulting in many potential comparisons. Technical aspects of imaging methods are complex, and they are continuously evolving (Chou et al., 2015).

HCC characterization with Magnetic resonance imaging (MRI) is based on their morphology, signal intensity on different sequences (HASTE, T1) and on their behaviour with paramagnetic contrast (Gadolinium). Specific contrast agents have also been used, but due to their high cost they are not commercially available in our country. However, even with regular protocol studies, including above mentioned sequences, there are still lesions where an differentiation between benign accurate and malignant lesions is not always achieved (Vergara et al., 2010).

Diffusion-weighted MR imaging (DWI), theoretically described as far back as the 1950s and 1960s by *Carr and Purcell*, (1954) and *Stejskal and Tanner* (1965), has become an established method in neuroradiology since the introduction of the intravoxel incoherent motion technique by *Le Bihan et al.* (1988).

The international accepted diagnosis criteria for hepatocellular carcinoma (HCC) in cirrhosis are highly accurate for large tumors, but offer relatively low sensitivity for small (<2 cm) tumors. diffusion