AIN SHAMS UNIVERSITY

Faculty of Computer & Information Sciences Computer Science Department

Distributed Resolution Enhancement Techniques for Remotely Sensed Image

Thesis submitted to the Department of Computer Science Faculty of Computer and Information Sciences Ain Shams University

In partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in Computer and Information Sciences

By

Marwa Sayed Moustafa

National Authority for Remote Sensing and Space Science

Under the supervision of

Prof. Dr. Mohamed F. Tolba

Professor at Scientific Computing Department Faculty of Computer and Information Sciences, Ain Shams University

Prof. Dr. Taymoor M. Nazmy

Professor at Computer science Department Faculty of Computer and Information Sciences, Ain Shams University

Ass. Prof. Dr. Ashraf K. Helmy

Associate Professor at Receive and Analysis Data Department National Authority for Remote sensing and space science

Ass. Prof. Dr. Hala M. Ebeid

Associate Professor at Scientific Computing Department Faculty of Computer and Information Sciences, Ain Shams University

Cairo-2106

Acknowledgments

Praise is to ALLAH, who guided and aided me to bring-forth to light this work and by whose grace this work has been completed.

I would like to express my deep gratitude to **Prof. Dr. Mohamed F. Tolba,** Professor of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, for his dedicated advisor throughout my PhD studies. He provided constant guidance to my academic work. I would like to express my deep gratitude for his valuable advice and revising all items of the work.

I would also like to express my gratitude to **Prof. Dr. Tymoor Mohammad Nazmy**, Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, who supported me in my academic studies. My gratitude goes also to **Ass. Prof. Dr. Ashraf K. Helmy**, Associate Professor, National Authority for Remote Sensing, who accompanied and supported me in my work and with whom I have closely collaborated.

My greatest debt is to **Ass. Prof. Dr. Hala M. Ebeid**, Associate Professor of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, for supervising this work, providing all valuable suggestions, comments, scientific material and revising all items of the work.

I would like to express my gratitude to the National Authority for Remote Sensing and Space Sciences (NARSS) for providing all valuable scientific facilities and remote sensing data required for this work. I would like to express all deep thanks to my colleagues and friends at NARSS.

Finally, the warmest thanks are to my family and my sisters for their love, faith, continuous support and prayers throughout the whole period of work.

Abstract

Resolution is an important attribute for different modern military and civil applications. High-resolution images facilitate image analysis tasks performed by machines, such as scene recognition and classification. However, in practice, high-resolution images are not always readily available for different reasons, such as the deficiency of the Camera optics and lenses, Motion between the camera sensor and the scene or subject, and atmosphere.

The problem of super-resolution has already been extensively researched. Different super-resolution algorithms have been developed. In this thesis, a comprehensive investigation of super-resolution methods is conducted. There are different categories for super-resolution methods, learning-based method offers more accurate reconstruction results compared to other traditional methods. In this thesis, three different super-resolution methods are proposed.

In the first super-resolution method, support vector regression is used to learn the relation between the low-resolution -HR patches using a predefined training set. In the reconstructing, the model obtained from the training step is used to recover accurate HR patches. Specifically, the input image is first decomposed into patches. Then, for each input patch, the SVR optimal model is used to recover the high-frequency information from the low-resolution input patch. To overcome the extensive computation in the proposed method, a transition from serial implementation to an optimized parallel on GPU architecture had been proposed.

Different experiments were conducted on the syntactic and multispectral dataset. Compared to the conventional super-resolution method, the proposed method reconstructs high-resolution images with higher accuracy. The speedup achieves approximately about 10-55 times faster than their optimized serial counterparts according to the image size.

The second SR method is based on manifold learning. Acceleration for a learning based SR method using locally linear embedding (LLE) algorithm is presented. The histogram of the gradient (HoG) is adapted to generate a training set. Three main kernels were implemented to improve the speed up of the performance. The bottleneck of the LLE was the matrix manipulation. CUBLAS library was adopted for matrix inverse and the calculation of matrix-vector multiplication modules; the shared memory was utilized in the matrix-addition and subtraction kernels to enhance the performance. Different experiments are conducted using the syntactic and multi-spectral dataset to show the effectiveness of the proposed algorithm. Manifold learning SR method outperforms significantly and achieves up to $11 \times$ to $163 \times$ speedup compared with the state-of-art method (bicubic interpolation).

Both SVR and manifold learning are example-based methods that show superior results for upscaling factor 2, but the image quality is degraded dramatically for larger upscaling factor.

To overcome these problems, compressed sensing framework had been adopted in the third method. The K-SVD algorithm had been utilized to formulate a joint dictionary, by exploiting high-frequency information from the external image database, where the local and nonlocal. In the reconstruction, acceleration for the compressive sampling matching pursuit (CoSaMP) algorithm is proposed of HR image. This method generates a sharper high-resolution image with fewer artifacts compared with state of the art super-resolution approach. The consistency and stability of the proposed method were experimentally tested using hyperspectral dataset. Experimental results demonstrate the speedup of the proposed GPU implementation to approximately 70x times faster than the corresponding optimized CPU.

Finally, the compressed sensing paradigm was extended to exploit self-similarities existing between image patches within a single image. There is no external training set is required. Different experiments have been carried out on a multispectral

dataset. Extensive experimental were conducted to validate the effectiveness of the proposed approach. The GPU implementation accelerates the speedups compared to the CPU sequential implementation from $20\times$ for small images to more than $40\times$ for large image size.

Table of Contents

			Page	
Ac	knowl	edgement		
Ab	stract.		I	
Ta	ble of	Contents	IV	
Lis	List of Figures			
Lis	st of Ta	ables	XI	
Ab	brevia	tions	XIII	
1-	Intro	duction	1	
_	1.1	Preliminaries.	3	
	1.1	1.1.1 Image Resolution.	3	
		1.1.2 Observation Model.	4	
	1.2	Super-resolution image	5	
	1.3	Motivation	7	
	1.4	Objective and Contribution of the Work	7	
	1.5	Thesis Organization.	8	
	1.5		O	
2-	Supe	r-Resolution Techniques	11	
	2.1	Inverse Problem	12	
		2.1.1 Definition of an Inverse Problem	12	
		2.1.2 Well-Posed and Ill-Posed Problems	13	
		2.1.3 Super-resolution as an Ill-Posed Inverse Problem	13	
	2.2	Taxonomy of SR Algorithms	14	
	2.3	Frequency Domain	16	
		2.3.1 Fourier Transform	17	
		2.3.2 Wavelet Transform	18	
	2.4	Spatial Domain	19	
		2.4.1 Multiple Image-based SR Algorithms	19	
		2.4.2 Single Image-based SR Algorithms	25	
	2.5	Super-Resolution using Sparse Representation	32	
		2.5.1 Dictionary Design	34	
	2.6	Summary	40	
_			4.4	
3-		leration of Super-Resolution using High Performance Computing	41	
	3.1	Introduction	42	
	3.2	Parallel Hardware	44	
	3.3	Trends in High Performance Computing	45	

	6.1	Dataset	t	110
6-	Expe	erimental	Results	109
	٥.٥	Summi	ary	10
	5.5	5.4.1	Proposed Parallel Implementation of OMP	. 104 10
	5.4	-	Resolution Method using Self-Similarity	
	5 A	5.3.1	Proposed Parallel Implementation of CoSaMP	
	5.3	-	Resolution based Compressive Sensing using CoSaMP	
	<i>7</i> 2	C .	Algorithms	0.2
		5.2.3	Combinatorial	91
		5.2.2	Greedy Algorithms	89
		5.2.1	L ₁ minimization algorithm	
	5.2	Recons	struction Algorithms in CS	88
		5.1.2	Incoherence	. 88
		5.1.1	Sparsity	
	5.1	Compr	essive Sensing (CS): A Background	85
5-	Supe	er-Resolu	tion using Compressed Sensing Framework	84
	4.5	Summe	шу	63
	4.3		Parallel implementation of Neighbor Embedding	83
		4.2.2		
		4.2.1	Manifold Learning	
	4.2	4.2.1	Resolution using Neighbor Embedding	
	4.2	4.1.3	Parallel Implementation of Support Vector Regression	
		4.1.2	Improved SR based Support Vector Regression	
		4.1.1	Support Vector Regression	
	4.1	-	Resolution using Support Vector Machine	
4-	_		tion using Example-based Techniques	62
4	C		i'an asing Engand bagad Tashnisana	60
	<i>5.</i> 7	•		01
	3.7		ary	
	3.6		I Super-Resolution	56
	3.5		nance Evaluation	
		3.4.3	Parallel Computing with CUDA	
		3.4.2	Compute Unified Device Architecture (CUDA)	
	J. T	3.4.1	The Fermi Architecture	. 50
	3.4		1-Purpose GPU Computing.	
		3.3.2	Cloud Computing	48
		3.3.1	Grid Computing	47
		3.3.1	Cluster Computing	46

	6.2	Hardware Platforms	113
	6.3	Performance Evaluation Criteria.	113
	6.4	Results	114
		6.4.1 Super-Resolution based Example Methods	114
		6.4.2 Compressed Sensing based Super-resolution	146
	6.5	Summary	163
7-	Conc	lusions & Future Work	166
	7.1	Conclusion	166
		7.1.1 Super-Resolution using Support Vector Machine	166
		7.1.2 Super-Resolution using Manifold Learning	168
		7.1.3 Super-Resolution using Compressed Sensing Framework	169
		7.1.4 Super-Resolution using Compressed Sensing and Self-	
		Similarity	170
	7.2	Future Work	171
Re	ferenc	es	172
		ons	187
		ıımmarv	107

List of Figures

Figure 1.1	Forward super-resolution image [3]	5
Figure 1.2	Ideal super-resolution setup. (a) Four images are taken with relative shifts of half a pixel in horizontal, vertical, and diagonal directions. (b) Their pixels can then be	
	interleaved to generate a double resolution image	6
Figure 2.1	Conceptual inverse problem	13
Figure 2.2	SR algorithms taxonomy	15
Figure 2.3	Conceptual framework of wavelet-domain-based SR	
	image approach	18
Figure 2.4	Conceptual framework of learning-based SR image	
	approach	26
Figure 3.1	The von Neumann architecture	43
Figure 3.2	High performance computing trends	46
Figure 3.3	Fermi Architecture	51
Figure 3.4	CUDA programming model represent thread hierarchy,	
T' 0.7	memory sharing, and communication/synchronization	53
Figure 3.5	Transition procedure from serial to parallel algorithms	54
Figure 4.1	Proposed super-resolution algorithm based on support	6 0
E' 4.0	vector regression	68
Figure 4.2	SVM training procedure using the LIBSVM library	71
Figure 4.3	SMO serial implementation	72
Figure 4.4	Parallel support vector regression implementation	74
Figure 4.5	Proposed super-resolution algorithm based on locally	70
Diama 16	neighbor embedding.	79
Figure 4.6	Sample of LLE algorithm GUP kernels	82
Figure 5.1	Compressed sensing (CS) framework.	86
Figure 5.2	Block diagram of hyperspectral super resolution a) training phase, b) reconstruction phase	93
Figure 5.3	Flowchart of the SR based on a CoSaMP algorithm	99
Figure 5.4	Sample of CoSaMP GPU kernels	100
Figure 5.5	Flow chart of the proposed super resolution method	102
Figure 5.6	Orthogonal Matching Pursuit flowchart	102
Figure 5.7	Flowchart of the computation of the super resolution	102
1 15010 3.7	method on a CPU/GPU processing scheme	106
Figure 5.8	Gauss–Jordan matrix inverse kernels on GPU	107

True-color of a) SPOT-5 at 23/08/2008, b) Landsat-8 acquired at 24/07/2015.	11
EO-1 hyperspectral image cube acquired on 30 April 2002.	11
Samples of training set consist of 30 images; each has size 512×512 pixels, 256 gray levels	11
The HR images obtained from a) bicubic method, b) POCS method, c) IBP method, d) CPU proposed method and e) GPU proposed method	11
Performance for SR method using PSNR (dB) for an input image of size 128×128 using for different patch	11
Performance for SR method using PSNR (dB) for an input image of size 128×128 for different noise rates	12
Performance for SR LLE method using PSNR (dB) for an input image of size 32×32 for different upscaling factor.	12
Speedup of the proposed SR GPU implementation with respect to sequential implementation on a CPU for	12
The SPOT-4 HR images using a) bicubic method, b) POCS method, c) IBP method, d) CPU proposed method and e) GPU proposed method	12
The Landsat-8 HR images using a) bicubic method, b) POCS method, c) IBP method, d) CPU proposed method and e) GPU proposed method	12
Performance for SR SVR method using PSNR (dB) for different input images with different noise rates	1
Performance for SR SVR method using PSNR (dB)for different input images at different patch size	1
Performance for SR SVR method using PSNR (dB) for input images of size 32×32 at different magnification factor	1
The HR images using a) Freeman et al. [8], b) Chang et al. [9] method, c) CPU proposed method and d) GPU	1
Performance for SR based NE method using PSNR (dB) for different input images using different	1
	acquired at 24/07/2015. EO-1 hyperspectral image cube acquired on 30 April 2002

Figure 6.16	The HR images using a) 5×5 , b) 7×7 , c) 9×9 , d) 11×11 and e) 15×15 -patch size.	135
Figure 6.17	Performance of the proposed SR based NE method using PSNR (dB) for different input images at different noise	
Figure 6.18	rates	136
F! (10)	σ=50.	136
Figure 6.19	SPOT-4 HR images obtained using a) Freeman et al. [96] method, b) Chang et al. [97] method, c) proposed SR based NE using CPU and d) proposed SR based NE	120
Figure 6.20	[96] method, b) Chang et al. [97] method, c) proposed SR based NE using CPU and d) proposed SR based NE	139 140
Figure 6.21	using GPU Performance of the SR based NE method using PSNR (dB) for different input images using different neighbors.	140
Figure 6.22	•	142
Figure 6.23		144
Figure 6.24	Performance of the SR based NE method using PSNR (dB) for different input images using different magnification factor.	145
Figure 6.25	_	147
Figure 6.26	The high-resolution image patch dictionary trained by K-SVD atoms of size 9 x 9. (b) The low-resolution image patch dictionary trained by K-SVD	148
Figure 6.27	(a) Window cropped from image in Figure 6.2 with size 1024×1024 pixels, and (b)— (e) images following magnification by a factor of 2 using (b) bi-cubic interpolation, (c) POCS method, (d) CPU method, and	110
Figure 6.28	128 × 128 pixels, and (b)–(e) images magnification by a	149
	factor 3 using (b) bi-cubic interpolation, (c) POCS	150

	method, (d) CPU method, and (e) GPU proposed	
	method. The red box denotes the zoomed-in area located	
	in the upper left corner of each image	
Figure 6.29	(a) Window cropped from image in Figure 6.2 with size	
_	128×128 pixels, and (b) – (e) images magnification by a	
	factor 4 using (b) bi-cubic interpolation, (c) POCS	
	method, (d) CPU method, and (e) GPU proposed	
	method. The red box denotes the zoomed-in area located	
	in the upper left corner of each image	151
Figure 6.30	Performance of the proposed method in terms of PSNR	
	for varing dictionary size	152
Figure 6.31	Execution times (ms) comparison between CoSaMP and	
	OMP parallel implementations for different image sizes.	153
Figure 6.32	Spectral differences between original HS images,	
	bicubic interpolation, POCS, and proposed HS SR	
	methods	155
Figure 6.33		
	c) Proposed GPU for the SR method	157
Figure 6.34		
	b) Bi-cubic interpolation and c) GPU proposed	
	methods	158
Figure 6.35		
	extract the base images in the training phase	160

List of Tables

Table 2.1	The list of performance of previous works for super- resolution reconstructions methods for hyperspectral	20
Table 2.2	image., Comparison between Haar method, DCT method, MOD method and K-SVD.	30
Table 3.1	Features comparison between cluster, grid, and cloud systems	49
Table 3.2	Summary of CUDA Architecture Parameters	51
Table 4.1	Standard kernel trick	65
Table 6.1	The spectral bands characteristics of Spot-4 and Landsat-8 image	111
Table 6.2	Hardware specification used in the experiment	113
Table 6.3	Results of the reconstructed HR for an input image of size 128×128 using PSNR (dB).	118
Table 6.4	Execution times (ms) of the proposed SR SVR method using CPU and GPU for different image size	118
Table 6.5	Performance of the proposed SR SVR method using PSNR (dB) for different SR methods.	126
Table 6.6	Execution times (ms) of the proposed SR SVR method using CPU and GPU for different image size; SPOT-5 and Landsat-8 image	129
Table 6.7	Performance comparison of SR based NE methods using PNSR for ten test images for 2× magnification by different	
Table 6.8	methods Performance of the proposed SR based NE method using PNSR for different patch sizes and overlapping	132 134
Table 6.9	Performance of the SR based NE method using PNSR for ten images of size 64×64 contaminated by different	
Table 6.10	magnification factor	137 138
Table 6.11	Performance of different SR based NE method using PNSR	
Table 6.12	(dB) for ten test images for 2 magnification Performance of the SR based NE method using PNSR for different images using different patch sizes and	141
	overlapping	143

Table 6.13	Performance of the SR based NE method using sequential	
	CPU implementation and parallel GPU implementation for	
	different image sizes	146
Table 6.14	Performance comparisons of different SR methods using	
	PSNR & SSIM for input image of size 512×512	149
Table 6.15	Performance of SR methods using PSNR for different	
	magnified factor values for input image of size 128×1280	151
Table 6.16	Execution time (ms) of the proposed SR CoSaMP method	
	using GPU and CPU for different image sizes	153
Table 6.17	Speedups of the proposed SR CoSaMP GPU using different	
	threads per block size with respect to sequential	
	implementation on a CPU	154
Table 6.18	Performance comparisons of bi-cubic interpolation and the	
	proposed method in terms of PSNR, SSIM and MSSIM	159
Table 6.19	Performance of the bi-cubic interpolation and the proposed	
	method in terms of PSNR for different dictionary and	
	window sizes	161
Table 6.20	Robustness of the proposed method using different	
	Gaussian noise.	162
Table 6.21	Execution time for C++ implementation for CPU and GPU	
	proposed method using different image sizes	162

Abbreviations

BP Basis Pursuit

CCD Charge-Coupled Device

CoSaMP Compressive Sampling Matching Pursuit

CS Compressive Sensing

CSNE Clustering And Supervised Neighbor Embedding

CUDA Compute Unified Device Architecture

DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DWT Discrete Wavelet Transform
FPGAs Field Programmable Gate Arrays

GA Genetic Algorithm
GD Geometric Duality

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HH High-High

HHSP Heavy Hitters On Steroids Pursuit

HL High-Low

HoG Histogram of Oriented Gradient HPC High Performance Computing

HR High- Resolution

IaaS Infrastructure as a Service IBP Iterative Back-Projection

ICA Independent Component Analysis
ILP Instruction-Level Parallelism

IP Isometric Property

IT Information Technology

KM Kernel Matrix

KPCA Kernel Principal Component Analysis

LH Low-High

LH-relation Low-High Relation

LLE Locally Linear Embedding

LL-relation Low-Low Relation

LPC Locality Preserving Constraints

LR Low Resolution

MAP Maximum A Posteriori

MCA Morphological Component Analysis MIMD Multiple Instructions, Multiple Data