

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

Value Engineering Analysis in the Construction of Box-Girder Bridges

Thesis

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

<u>By</u>

Eng. Dina Mahmoud Mohammed Mansour

Researcher, Department of Structural Engineering, Faculty of Engineering, Ain Shams University

Supervised by

Prof. Dr. Ibrahim Abd EL Rashid Nosier

Professor of Construction Management Ain Shams University

Assoc. Prof. Dr. Hisham Arafat Mahdy

Associate Professor and head of Structural Engineering Department, Future University in Egypt

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Structural).

No part of this thesis has been submitted for a degree or a qualification for any other university or institution.

Date : 11/9/2013

Name : Dina Mahmoud Mohammed Mansour

Signature : Dína Mansour

ACKNOWLEDGEMENT

First of all thanks to God to whom I relate any success and achievement in my life.

I wish to express my sincere appreciation to my supervisors, **Prof. Dr. Ibrahim Abd El Rashid** and **Assoc. Prof. Dr. Hisham Arafat** for providing guidance and information for this research. Their constant encouragement, support and friendship have made it possible to finish this research. I owe them a deep debt of gratitude.

My special thanks would go to all bridge and computer science experts who participated in this research by providing such valuable information and for their great help throughout the different stages of the research.

Finally, I would like to express my deep thanks to all my family for their patience, continuous encouragement and support during this work.

ABSTRACT

Value Engineering Analysis in the Construction of Box-Girder Bridges

Bridges construction are one of the most challenging construction projects around the world as it necessitates a lot of engineering, experience, equipment, and a huge deal of money. Consequently, it is indispensable to consider appropriately how to direct the monetary total spent on such projects. Currently the selection process of bridge's superstructure construction methods in Egypt mainly depends on the experts' knowledge and experience without performing or applying a systematic procedure. Thus, the decision might not be the most suitable one as some important considerations could be neglected.

Recently, box-girder bridges are considered as one of the most common systems of Nile bridges constructed in Egypt and it is also widely used all over the world. There are many methods of the construction of box-girder bridges. Therefore in order to select the most appropriate construction method many factors should be well considered as site conditions, technology used, construction method characteristics and bridge physical characteristics.

In this study, a machine learning model is developed to determine the most appropriate box-girder bridge construction method, applying the spirit of Value Engineering technique. Value Engineering is used for comparing the different construction methods for achieving the required basic function after considering the main significant factors and without affecting the desired quality.

Keywords: Box-girder - value - construction methods - Value Engineering - Egypt - artificial intelligence - classification - machine learning - analysis.

TABLE OF CONTENTS

		Page
Ackno	wledgement	I
Abstra	ict	II
Table	of Contents	IV
List of	Figures	VII
List of	Tables	XII
Chapt	ter 1: Introduction	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Summary of Research Methodology	5
Chapt	ter 2: Literature Review	7
2.1	Introduction	7
2.2	Value Engineering Literature Review	7
2.3	Bridges Construction Methods Literature Review	19
2.4	Artificial Intelligence Literature Review	25
Chapt	ter 3: Box-Girder Bridges Construction Methods	28
3.1	Introduction	28
3.2	Benefits of using the Box-Girder Cross Section in Bridges	28
3.3	Box-Girder Bridges Construction Methods in Egypt and	
	in the Middle East	28
Chapt	ter 4: Definition, Principles and Methodology of the	
	Value Engineering Technique	45
4.1	Introduction	45
4.2	Definition of Value Engineering	46
4.3	History of Value Engineering	47

4.4	Facto	rs to be Considered When Applying Value	
	Engin	eering Concept	48
4.5	Funda	nmentals of Value Engineering	50
4.6	Verb-	Noun Approach	51
4.7	Metho	odology of Value Engineering	52
Chapt	er 5: A	Artificial Intelligence	61
5.1	Introd	luction	61
5.2	Defin	ition of Artificial Intelligence	61
5.3	Know	ledge Representation	62
5.4	AI Ar	oplication Areas	63
	5.4.1	Machine Learning	63
		5.4.1.1 Machine Learning Application	65
Chapt	er 6: I	Developing the Artificial Intelligence Model	7 9
6.1	Introd	luction	79
6.2	Bridge Construction Industry in Egypt 7		79
6.3	Interv	iews	80
	6.3.1	Results of Interviews	80
		6.3.1.1 Main Box-Girder Bridge Construction Method	l
		used in Egypt and in the Middle East	80
		6.3.1.2 The Factors Affecting the Choosing Criteria	
		of the Most Appropriate Method	81
		6.3.1.3 The Participants with this Research and the	
		Needed Information for the Next Stages	84
6.4	Quest	ionnaire Survey	85
	6.4.1	Questionnaire Design	86
	6.4.2	Questionnaire Results	87
6.5	Value	Engineering Data Mining Software	96
	6.5.1	WEKA Design and Implementation	97

	6.5.2	Data Set Format	99
	6.5.3	Machine Learning Schemes	101
	6.5.4	Output Processing	104
6.6	The C	Graphical Interface System (IBCT)	104
6.7	The Evaluation Phase of the System		108
	6.7.1	The Main Information of the Project	108
	6.7.2	The Main Features of the Project	110
	6.7.3	Testing the System	110
		6.7.3.1 The Part Crossing the Nile	110
		6.7.3.2 The Part Crossing the Highway	112
	6.7.4	Results Analysis in WEKA (PREval)	114
Chapt	er 7: S	Summary, Conclusions and Recommendations	119
7.1	Introd	luction	119
7.2	Summary		119
7.3	Concl	usions	121
7.4	Recor	nmendations for Future Studies	123
Apper	ndix (A): Survey on the Selection Criteria for	
		Construction Methods of Box Girder Bridges	124
Apper	dix (B): Questionnaires' Data in ARFF Format	139
Refere	ences		150
Arabi	c Sumi	mary	
Arabi	c Abst	ract	

LIST OF FIGURES

Figure	Title	Page
Figure 1.1	Map of Egypt showing the planned box-girder	2
	bridges projects up to 2017, (General	
	Authority for Roads, Bridges and Land	
	Transport (GARBLT), 2007)	
Figure 1.2	Goals of implementing Value Engineering	3
	technique (Abdul-Aziz S. Al-Yousefi, 2010)	
Figure 1.3	Summary of research methodology	6
Figure 2.1	Value graph with importance vs. cost (bridge	11
	component evaluation), (GangaRao et al,	
	1988)	
Figure 2.2	Best time for implementing Value	13
	Engineering (Dell' Isola, 1997)	
Figure 2.3	Memorial Causeway Bridge during	25
	construction (William R. Adams III, 2004)	
Figure 3.1	Different construction methods of box girder	29
	bridges	
Figure 3.2	Construction of Superstructure Interchanges	30
	/Bridges at Sultanate of Oman (Muscat) -	
	(Staging Erection using Global Scaffolding	
	System), (Alexander Artamonov et al (2008))	
Figure 3.3	Balanced cantilever construction (Gunnar	32
	Lucko, 1999)	
Figure 3.4	Balanced cantilever method during	34

	construction", Kanawha river bridge / West	
	Virginia", (Santiago Rodriguez and T.Y. Lin	
	International, 2008)	
Figure 3.5	Incremental Launching Technique (Gunnar	36
	Lucko, 1999)	
Figure 3.6	Launching nose during erection of the	38
	Gebergrund Bridge in Germany (Boldi Kisch	
	and Per Langefors, 2005)	
Figure 3.7	The general construction sequence of the	39
	Mobile Scaffolding Method (Construction	
	Stage Analysis of MSS tutorial, Project	
	Reference Catalogue, 2007)	
Figure 3.8	Taiwan High Speed Rail Project during	41
	construction using mobile scaffolding system	
	(Project Reference Catalogue, 2007)	
Figure 3.9	Traveler Profile in Taiwan High Speed Rail	41
	Project (Project Reference Catalogue, 2007)	
Figure 3.10	Post-tensioning ducts in a box girder (Dr.	43
	Amlan K Sengupta and prof. Devdas Menon,	
	2008)	
Figure 3.11	Steel box girder bridge (K.C.Chauhan et al,	44
	2006)	
Figure 4.1	Major decision-makers of facility costs	48
	(Barton, 2000)	
Figure 4.2	Life Cycle Costing- Typical Office Building	49
	(Barton, 2000)	
Figure 4.3	Cost Impact of Principal Disciplines (Barton,	50

	2000)	
Figure 4.4	The three Stages of Value Engineering	52
	(Abdul-Aziz S. Al-Yousefi, 2010)	
Figure 4.5	The Seven Phases of the VE Job Plan (Abdul-	53
	Aziz S. Al-Yousefi, 2010)	
Figure 4.6	Why/How Logic Diagram of Rules for	57
	Brainstorming (Menno Huiser, 2007)	
Figure 5.1	The process of supervised Machine Learning	67
	(Kotsiantis, 2007)	
Figure 5.2	A decision tree (Kotsiantis, 2007)	68
Figure 5.3	A multi-layer neural network (Donalek, 2011)	70
Figure 5.4	Example for supervised learning:	77
	Classification in two dimensions. Labels are	
	binary Red and Blue. The black line is the	
	decision boundary for future predictions	
	(Adams, 2011)	
Figure 5.5	Example for unsupervised learning:	78
	Clustering in two dimensions. There are no	
	labels for data points; however, data can be	
	easily classified into three groups indicated by	
	x,Δ,o (Adams, 2011)	
Figure 6.1	Percentage of Responses to the sent	87
	questionnaires	
Figure 6.2	Percentage of responses according to years of	88
	experience	
Figure 6.3	Percentage of responses with respect to the	89
	decision makers of the selected construction	

	method	
Figure 6.4	Percentage of respondents having a specific	90
	procedure for the selection process verses	
	other don't have one	
Figure 6.5	Percentage of respondents about whether they	91
	apply VE or not	
Figure 6.6	Percentage of respondents according to the	92
	savings achieved due to applying VE	
Figure 6.7	Percentage of respondents who apply the VE	93
	technique using a specialized team verses	
	those who don't have one	
Figure 6.8	The first interface window of WEKA	99
Figure 6.9	The ARFF format of the questionnaires' data	100
	(Information Phase)	
Figure 6.10	The data is presented in WEKA (Function	102
	Analysis Phase)	
Figure 6.11	The data visualization in WEKA	103
Figure 6.12	The graphical interface system IBCT	105
Figure 6.13	The first window appears after selecting the	106
	new file button	
Figure 6.14	This figure shows the range given for the span	106
	of bridge	
Figure 6.15	The data required for the surrounding	107
	environment characteristics	
Figure 6.16	The data required for the construction method	108
	characteristics	
Figure 6.17	The location of the bridge	109

Figure 6.18	The information of the physical	111
	characteristics	
Figure 6.19	The information of the surrounding	111
	environment	
Figure 6.20	The information of the construction method	112
	characteristics and the most appropriate	
	method is revealed	
Figure 6.21	The information of the physical	113
	characteristics	
Figure 6.22	The information of the surrounding	113
	environment	
Figure 6.23	The information of the construction method	114
	characteristics and the most appropriate	
	method is revealed	
Figure 6.24	The PREval screen showing probabilities of	115
	each construction method (using Naive Bayes	
	classifier)	
Figure 6.25	The PREval screen showing probabilities of	116
	each construction method (using Multi-Layer	
	Perceptron (Neural Network))	
Figure 6.26	The PREval screen showing probabilities of	117
	each construction method (using Naive Bayes	
	classifier)	
Figure 6.27	The PREval screen showing probabilities of	118
	each construction method (using Multi-Layer	
	Perceptron (NN))	

LIST OF TABLES

Table	Title	Page
Table 5.1	Comparing learning algorithms (**** stars	75
	represent the best and * star the worst	
	performance), (Kotsiantis, 2007)	
Table 6.1	Responses sorted by profession	88
Table 6.2	Responses sorted by the experts' place of work	89
Table 6.3	Calculations of the average rank for each level	94
	in the hierarchy	
Table 6.4	Recalculations of the average rank after	95
	performing the required modifications	

CHAPTER

1

INTRODUCTION