

COMPROMISED NODE DETECTION USING HIERARCHICAL FUZZY LOGIC AND FEATURE REDUCTION

By

Ahmed Shawki Bayoumi Abu Daia

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Computer Engineering

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2017

COMPROMISED NODE DETECTION USING HIERARCHICAL FUZZY LOGIC AND FEATURE REDUCTION

By Ahmed Shawki Bayoumi Abu Daia

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Computer Engineering

Under the Supervision of

Prof. Dr. Magda B. Fayek

Dr. Rabie A. Ramadan

Professor
Computer Engineering Department
Faculty of Engineering, Cairo University

Doctor
Computer Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2017

COMPROMISED NODE DETECTION USING HIERARCHICAL FUZZY LOGIC AND FEATURE REDUCTION

By Ahmed Shawki Bayoumi Abu Daia

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Computer Engineering

Approved by the Examining Committee
Prof. Dr. Magda B. Fayek, Thesis Main Advisor
Computer Department, Faculty of Engineering at Cairo University
Prof. Dr. Ihab E. Talkhan, Internal Examiner
Computer Department, Faculty of Engineering at Cairo University
Prof. Dr. Mohamed Z. Abd El Megeed, External Examiner
Computer Department, Faculty of Engineering at Al Azhar University

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer's Name: Ahmed Shawki Bayoumi Abu Daia

Date of Birth: 10/03/1983 **Nationality:** Egyptian

E-mail: Ahmed.Shawky@outlook.com

Phone: 01118114070

Address: 32 Mahmoud Ateeq St. Al-Margoushy,

Shoubra El Khiema, Cairo, Egypt

Registration Date: 01 / 10 / 2011
Awarding Date: / 2017
Degree: Master of Science
Department: Computer Engineering

Supervisors:

Prof. Dr. Magda B. Fayek

Dr. Rabie A. Ramadan

Examiners:

Prof. Magda B. Fayek (Thesis main advisor)
Prof. Ihab E. Talkhan (Internal examiner)
Prof. Mohamed Z. Abd El Megeed (External examiner)
(Professor at Computer Engineering Department, Faculty

of Engineering at Al Azhar University)

Title of Thesis:

COMPROMISED NODE DETECTION USING HIERARCHICAL FUZZY LOGIC AND FEATURE REDUCTION

Key Words:

Wireless Attacks; Network Attacks; Hierarchal Fuzzy Logic; FURIA Fuzzy Logic; Particle Swarm Optimization (PSO); Machine Learning

Summary:

This research proposes a hierarchal fuzzy logic system used for detecting the compromised or attacked nodes in wireless networks. The proposed system is composed of three hierarchal layers and each layer composed of concrete components built using the Fuzzy Unordered Rule Induction Algorithm (FURIA) fuzzy logic. The Particle Swarm Optimization (PSO) technique is used at the data preprocessing phase to reduce the significant features number. We used NSL-KDD dataset for the training and evaluation phases, and the WEKA is the environment used for experiments.

Acknowledgments

In the name of Allah, the Lord or the worlds, the Most Merciful, the Most Gracious, all praise be to Allah, and prayers and peace be upon His servant and messenger Mohamed. First and foremost, I must acknowledge my endless thanks to Allah, the Ever-Magnificent; the Ever-Glorious; the Ever-Thankful, for His assistance and bless. I am sure that this work would have never become truth, without His guidance.

There are some people without whom this thesis might not have been written, and to whom I am greatly indebted. I owe a profound obligation of appreciation to my university for giving me the opportunity to complete this work. I am grateful to people, who worked with me from the beginning till the completion of this research particularly my supervisor Dr. Rabie Ramadan, who has always been honorable and munificent during all phases and difficulties of the research, and I highly appreciate the efforts and endless support by Dr. Magda Fayek. Last but not least, deepest thanks to all people who encourage me and took part in making this thesis real.

Dedication

I dedicate this thesis to the sake of Allah my Creator and my Master; messenger Mohammed (peace be upon him); the soul of my father who continued to learn, grow and develop me and who has been a source of encouragement and inspiration to me throughout my life; my mother may Allah protect and save her; my dearest wife, Tayseer, for her endless support and motivation, constant encouragement, limitless giving and great sacrifice, helping me accomplish my degree; and my beloved daughters: Rital, and Loujin, whom I can't stop loving them. To all my beloved family, the symbol of love and giving; my friends who encourage and support me; and All the people in my life who touch my heart.

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	VI
NOMENCLATURE	
ABSTRACT	
CHAPTER 1: INTRODUCTION	
1.1.Problem Statement	1
1.2.Network Security Services	
1.3.WSN POSSIBLE ATTACKS	
1.4.ATTACK CATEGORIZATION FEATURES	10
1.5.Organization of the Thesis	16
CHAPTER 2 LITERATURE REVIEW	17
2.1.Trust and Trust Methodologies	17
2.2. Compromised Node mitigation techniques	19
2.3.ATTACK AVOIDANCE TECHNIQUES	26
CHAPTER 3: PROPOSED SOLUTION	27
3.1.Introduction	27
3.2.Proposed solution architecture	27
3.2.1.First Layer Components	27
3.2.2.Second Layer Components	28
3.2.3.Third Layer Components	29
3.3.Data Preprocessing	31
3.3.1.Feature minimization using PSO	31
3.3.2.Testing and training data preparation	32
3.4.FURIA ALGORITHM	32
CHAPTER 4 : DATASET	35
4.1.Introduction	35
4.2.Dataset Statistics	36
4.2.1.NSL KDD Test+	36

4.2.2.NSL KDD Test-21		38
4.2.3.NSL KDDTrain+_20Per	cent	39
CHAPTER 5 : EXPERIMENT	TAL RESULTS AND ANALYSIS	41
5.1.Performance Evaluation	ON CRITERIA	41
5.2.PSO FEATURE SELECTION I	EXPERIMENT RESULTS	44
5.3.FURIA EXPERIMENT RESUI	LTS	53
5.3.1.Layer 1 (Attack Existence	e Detection) Results	54
5.3.2.Layer 2 (Detecting Attac	k Category) Results	55
5.3.3.Layer 3 (Detecting Attac	k Name) Results	58
5.3.3.1.DoS Attacks Results		
5.3.3.2.Probes Attacks Results		
5.3.3.3.R2L Attack Results		
5.3.3.4.U2R Attack Results 5.4.COMPARATIVE STUDY		
CHAPTER 6: DISCUSSION	AND CONCLUSIONS	81
APPENDIX A: WEKA RAW	RESULT DATA	82
REFERENCES		126

List of Tables

Table 1.1: Detecting features of different attacks	10
Table 1.2: Detected attacks by certain feature	14
Table 2.1: ISA possible encryption levels	23
Table 2.2: Mitigation techniques pros and cons	24
Table 4.1: NSL-KDD coloring scheme and meaning	36
Table 4.2: Categories statistics in NSL-KDD Test+ file	36
Table 4.3: Attacks statistics in NSL-KDD Test+ file	36
Table 4.4: Categories statistics in NSL-KDD Test-21 file	38
Table 4.5: Attacks statistics in NSL-KDD Test-21 file	38
Table 4.6: Categories statistics in NSL-KDD Train +_20Percent file	39
Table 4.7: Attacks statistics in NSL-KDD Train +_20Percent file	40
Table 3.1: Selected Feature sets based on PSO suggestions	52
Table 5.1: Comparative Study of Classification Techniques	
Table 5.2: Comparing FURIA and LSSVM-IDS with different parameters	79
Table 5.3: Comparing FURIA and LSSVM-IDS with other systems	80