Abstract

Background: With increasing number of patients who suffered from end-stage renal disease and under long-term hemodialysis, the functioning vascular access means better prognosis and quality of life for these patients is essential.

Nowadays the autologuous arteriovenous fistula (AVF) and the synthetic arteriovenous graft (AVG) remain the major access alternatives of choice, which have the advantage of long-term survival.

Aims: To evaluate the role and usefulness of Multidetector CT angiography (CTA) and color Doppler US (CDUS) in assessment of vascular tree of AVFs and comprehensive evaluation of possible shunt complications in ESRD patients on hemodialysis.

Methodology: End-stage renal disease for which long-term hemodialysis is required for a significant percentage of the population. The arteriovenous fistula has become the most widely used mean of providing vascular access for patients on regular hemodialysis.

Conclusion: the obtained results document that Color Doppler US is readily available, noninvasive method, inexpensive, and has no radiation exposure or use of contrast material. It allows assessment of both anatomy and hemodynamics of an AVF. However the quality of images depends on the skill of the operator. Other drawbacks of color Doppler US are the inaccurate detection of central venous obstruction and the absence of an angiographic map, which may be desired for surgery.

Keywords: color Doppler US, Multidetector CT, AVFs, ESRD patients, hemodialysis.

Contents

Subjects	Page
List of abbreviations List of Figures List of Tables	IV
• Introduction	1
Aim of the work	4
• Chapter (1): Anatomy of Vascular Supply of Upper I	Limb5
Chapter (2): Hemodialysis	24
Chapter (3): Vascular Access in Hemodialysis	28
• Chapter (4): Physics Of Color Doppler Ultrasound	49
Chapter (5): Technique And Doppler Examination (AV Fistula	
• Chapter (6): Principles of MDCT Angiography	69
Chapter (7): Complications Of AVFs Fistula	74
Summary and Conclusion	103
• References	105
Arabic Summary	

List of Abbreviations

AA Autogenous access.

AV Arteriovenous

AVF Arteriovenous fistula

AVG Arteriovenous graft

BB Brachio-basilic

BC Brachio-cephalic

CDU, CDUS Colour Doppler ultrasound

CFDU Colour flow Doppler ultrasound

CFDUS Colour flow Doppler ultrasound

CHD Chronic hemodialysis

CHF Chronic heart failure

CKD Chronic Kidney Disease

CRF Chronic renal failure

CT Computed Tomography

CTA Computed Tomography angiography

CW Continuous wave

DASS Dialysis associated steal syndrome.

DHIS Distal hypoperfusion ischemic syndrome

DAVF Direct arteriovenous fistula

DSA Digital subtraction angiography

EDV End diastolic velocity.

ESRD End stage renal disease.

ESRF End stage renal failure.

GAVF Graft arteriovenous fistula.

HD Hemodialysis.

HU Hounsfeild unit

HUV Human umbilical vein.

HUVG Human umbilical vein graft.

IV Intravenous

IMT Intima media thickness.

IMN Ischemic monomelic neuropathy

MDCT Multidetector Computed Tomography

MDCTA Multidetector CT angiography

MSCT Multislice CT

PRF Pulse repetition frequency.

PSV Peak systolic velocity.

PTFE Polytetrafluoroethylene.

PW Pulsed wave.

RC Radio-cephalic.

RC-AVF Radio-cephalic arteriovenous fistula.

RI Resistivity index.

ROI Region of interest.

RRT Renal replacement therapy.

SD Standard deviation.

US Ultrasound.

VA Vascular access.

VP Venous pressure

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Anatomy of subclavian artery	5
<u>2</u>	Anatomy and relations of subclavian	6
<u>3</u>	Anatomy of axillary artery	7
<u>4</u>	The pectoralis minor muscle divides the axillary artery into 3 parts	8
<u>5</u>	Brachial artery anatomy	9
<u>6</u>	Brachial artery anatomy	11
<u>7</u>	Radial and ulnar artery anatomy	15
<u>8</u>	The path of arterial blood flow from the subclavian artery to the digital arteries of the fingers	16
9	Venouse drainage of upper limb	20
<u>10</u>	These images depict the six ESRD treatment modality options available for the patient	25
<u>11</u>	Diagram reveals the principle idea of the dialysis Machine	26
<u>12</u>	Tunneled venous catheter	29
<u>13</u>	External arteriovenous shunt	30
<u>14</u>	Common types of Autogenous AVF	31
<u>15</u>	The Autogenous posterior radial branch- cephalic fistula	35
<u>16</u>	Side-to-side brachiocephalic arteriovenous fistula	37
<u>17</u>	A native arteriovenous fistula in the elbow region between artery brachialis and caphalic vein	38

No.	<u>Figure</u>	Page
<u>18</u>	Arterialization of the cephalic and basilic veins	39
<u>19</u>	Ulnar basilic fistula	39
<u>20</u>	Arteriovenous conduits of expanded polytetra-flouro-ethylene used to create subcutaneous loops in the forearm	42
<u>21</u>	Expanded Polytetraflouroethylene (PTFE)	44
<u>22</u>	Areterioveonus graft	47
<u>23</u>	Ultrasound velocity measurement	50
<u>24</u>	Doppler ultrasound Sift Equation	51
<u>25</u>	Color flow (RT) and power Doppler (LT) images of the same phantom under the same conditions. The directions of flow toward and away from the transducer are seen in the color flow image (top). The power Doppler image (bottom) displays only the intensity of the Doppler shift	52
<u>26</u>	Color Power Angio" of a submucous fibroid, note the small vessels inside the tumor	54
<u>27</u>	a. Spectral Doppler image shows a normal biphasic arterial waveform of this left brachial artery just above the antecubital fossa. PSV 60.2 cm/s. b. Spectral Doppler image shows both cardiac periodicity and respiratory phasicity in the right internal jugular vein.	55,56
<u>28</u>	Angle between the beam and the direction of flow	56
<u>29</u>	Artifactual display of flow beneath the baseline (arrow) in this image is due to improper Doppler gain setting	57

No.	<u>Figure</u>	Page
<u>30</u>	Aliasing displayed on a spectral Doppler waveform Aliasing displayed in color Doppler.	58
31	Tissue vibration :The appearance of flow outside of the vessel is due to signal detection of tissue movement, rather than motion of actual blood flow	59
<u>32</u>	Twinkle artifact : color comet-tail artifact	60
<u>33</u>	Flash artifact visualized due to motion of bowel gas anterior to IVC (inferior vena Cava)	61
<u>34</u>	Flow in portal vein seen on both sides of baseline due to vascular motion artifact	61
<u>35</u>	Spurious spectral broadening visualized in (A) due to large sample volume. When sample-volume size is reduced, the accurate depiction of flow velocities within the vessel is seen in image (B)	62
<u>36</u>	Artifactual appearance of thrombosis in IVC (arrow) due to PRF/velocity scale setting being too high to display low-velocity slow venous flow	63
<u>37</u>	Normal arterio- venous fistula: Transverse section through arterial (A) to venous (V) anastmosis	65
<u>38</u>	Duplex sonogram of the radial artery demonstrates typical monophasic flow supplying a low-resistance radiocephalic fistula	66
<u>39</u>	This case shows complimentary role of 2D and 3D images and typical image findings of pseudoaneurysm Of brachiocephalic arteriovenouse fistula	82

No.	<u>Figure</u>	Page
40	Right brachiocephalic fistula complaining of swelling on medial aspect of the arm. (a and b) VRT, (c) axial and (d and e) coronal MPR CTA images revealed patent aneurysmal dilatation of the venous side of the fistula, immediately distal to the site of the fistula with SVC and right subclavian vein obstruction with secondary venous collateralization along chest wall and right upper limb as well as post-anastomotic cephalic vein stenosis. (f and g) CDUS shows aneurysmally cephalic vein), with arterialized waveform distal to the anastomotic site, indicating a well-functioning fistula.	83
41	B-mode image of a thrombosis in the venous outflow tract	86
42	 Case shows powerful capability of MDCT for diagnosis, follow-up, and assistance in interventional procedures. Coronal 2-mm thin-section image shows occluded right distal subclavian vein 	87
43	totally thrombosed right innominate and subclavian veins with secondary venous collateralization along right upper limb and chest wall. Incidental findings of bilateral polycystic kidneys and multiple hepatic cysts detected. (d and e) CDUS revealed patent AVF with totally occluded incompressible thrombosed cephalic vein at the arm.	88
<u>44</u>	Types of stenoses according to site	90

No.	<u>Figure</u>	Page
<u>45</u>	Stenosis of dialysis access: Perivascular vibration artifacts impair morphologic as well as hemodynamic assessment of a shunt stenosis by color duplex scanning. Therefore, morphologic assessment is done on the basis of the B-mode scan without activation of the color mode	91
<u>46</u>	A high-grade stenosis is noted just distal to the takeoff of a branch, where a marked elevation in both peak systolic (843.0cm/sec) and end diastolic (626.3 cm/sec) velocities is found. Doppler color flow imaging demonstrates post-stenotic turbulence distal to the narrowest segment of the vein	92
<u>47</u>	'Steal phenomenon' in the radial artery at the anastomotic region.	94
48	Color Doppler of an anechoic seroma (star) generating a post-anastomotic venous stenosis	97
<u>49</u>	Right radiocephalic arteriovenous fistula (AVF) for 21 years with mild right arm swelling after recent dialysis for evaluation. Case shows underlying venous stenosis.	99
<u>50</u>	68-year-old woman with left radiocephalic arteriovenous fistula (AVF) created 2 months earlier but failing to mature. Case shows findings of accessory veins and central vein thrombosis.	100

List of Tables

No.	<u>Table</u>	Page
1	Major collateral pathways of the upper arm	16
<u>2</u>	Anatomical variations of the upper limb arteries	17
3	Classification of chronic kidney disease	24
4	Dialysis access method advantages and disadvantages	45
<u>5</u>	Hemodialysis access placement in preferential order	48
<u>6</u>	Factors affecting colour flow image	53
<u>7</u>	Factors affecting the spectral image	57
<u>8</u>	Minimal vascular requirement for a successful AVF.	68
9	Clinical features and incidence of the most common complications of AVFs,	75
<u>10</u>	Characteristics and grading of complications	7 6
<u>11</u>	Classification of steal syndrome	93
<u>12</u>	Important clinical dialysis access problem, possible causes, and diagnostic role of duplex scan.	101

Introduction

Aim of the Work

CHAPTER 1

Anatomy of Vascular Supply of Upper Limb

CHAPTER 2

Hemodialysis

CHAPTER 3

Vascular Access in Hemodialysis

