A Study of Oxidative DNA Damage, Lipid Oxidation and Antioxidant Activity in Neonates with Respiratory Distress Syndrome

Thesis

Submitted for partial fulfillment of Master degree in Pediatrics

By Saleh Arafa Gaballah M.B. B.CH. (2010)

Under supervision of **Prof. Dr. Zeinab Anwar EL-kabbany**

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Ahmed Shafik Nada

Consultant of Physiology Radiation Center for Research and Technology

Dr. Dina Mohamed Mohamed Shinkar

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University
2016

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I wish to thank **Professor Zeinab Anwar Elkabany**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, who offered me constructive ideas and guidance. Her help and support were the major factor for completion of the present work.

I would like to express my deepest thanks and gratitude to **Doctor Dina Mohamed M Shinkar**, Lecturer of Pediatrics, Faculty of Medicine- Ain Shams University, I am indebted to her for always being there to help, share and solve difficulties met in the present work. I really appreciate her being so generous with her effort, time and experience.

My sincere appreciation to **Professor Dr.**Ahmed Shafik Mada, Professor of Physiology, Radiation center for research and technology., for his valuable suggestions, good support and unlimited help during this work.

Also, it is my great pleasure to express my deepest gratitude to **Doctor Eman Abd El-Rahman Ismail**, Consultant of Clinical Pathology, Faculty of Medicine, Ain-Shams University and **Doctor Rania Ali Thassan El-Farrash**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for the effort and time they spent.

Lastly, I would like to thank my family for their support and great help to accomplish this work.

Saleh Arafa Gaballah

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	
Abstract	ix
Introduction	1
Aim of the Work	13
Review of Literature	
Prematurity	14
Incidence	
Risk factors of preterm births	15
Mortality	16
Problems of prematurity	
Management of prematurity	18
Respiratory Distress Syndrome	
Definition	21
Incidence	21
Pathophysiology	22
Clinical manifestations	23
Clinical course	23
Diagnosis of RDS	24
Diagnosis of RDS	26
Antioxidants & Oxidative Stress	39
Role of Oxygen free radicals	39
Basic Mechanism oxidative stress	40
Reactive oxygen species (ROS)	40
Reactive nitrogen species (RNS)	41
Redox signaling	45
Antioxidants	55
Oxidative stress in neonates	58
Respiratory distress syndrome and oxidative stress	61

List of Contents (Cont...)

Title	Page No.
Patients and Methods	
Results	
Discussion	
Summary	109
Conclusions	
Recommendations	114
References	115
Arabic Summary	

List of Tables

Table No.	Title Page N	Jo .
Table (1): Table (2):	Risk factors for preterm delivery Neonatal problems associated with premature infants	
Table (3):	Downes' score.	25
Table (4):	Silverman- Anderson retraction score	
Table (5):	Grades of RDS according to X ray findings	26
Table (6):	Differential diagnosis of respiratory	
	distress in the newborn	28
Table (7):	Maternal clinical data among mothers of neonates with RDS and control group	
Table (8):	Clinical data among neonates with RDS	
	and control group.	78
Table (9):	Hematological and biochemical data at day 1 among neonates with RDS and control	
	group.	80
Table (10):	Oxidative stress markers at day 1 among neonates with RDS and control group	81
Table (11):	Oxidative stress data at day 1 and day 3 among neonates with RDS	83
Table (12):	Oxidative stress markers at day 3 among patients with RDS compared with control group	85
Table (13):	Levels of 8-OHdG in relation to maternal and neonatal clinical characteristics among RDS group	87
Table (14):	TAC levels in relation to maternal and neonatal clinical characteristics among RDS group	
Table (15):	MDA levels in relation to maternal and neonatal clinical characteristics among	90

List of Tables (Cont...)

Table No.	Title	Page No.
Table (16):	Correlations between 8-OHdG level clinical and laboratory variables neonates with RDS.	among
Table (17):	Correlation between TAC and MDA at day 1 and laboratory variables neonates with RDS	among
Table (18):	Multiple regression analysis of affecting 8-OHdG levels among RD at day 1 and day 3.	S group

List of Figures

Fig. No.	Title	Page	No.
Figure (1): Figure (2): Figure (3):	RDS Grade 4: Bilatral confluent opacifi of lungs (White lung) Summary of production of ROS, RNS Oxidative stress and various antioxidants.		43
Figure (4):	The imbalance between prooxidants antioxidants in "oxygen radical diseaneonatology	ase of	60
Figure (5):	Day 1 TAC and MDA levels among new with RDS and control group		82
Figure (6):	Day 1 levels of 8-Hydroxy-desoxyguar among neonates with RDS and control g		82
Figure (7):	TAC and MDA levels at day 1 and among neonates with RDS.	-	84
Figure (8):	Levels of 8-Hydroxy-desoxyguanosine a 1 and day 3 among neonates with RDS.	-	84
Figure (9):	Levels of 8-Hydroxy-desoxyguanosine a 1 and day 3 among neonates with compared with the control group.	RDS	86
Figure (10):	Levels of 8-Hydroxy-desoxyguanosine a 1 and day 3 in relation to RD grade a neonates with RDS	among	88
Figure (11):	Levels of 8-Hydroxy-desoxyguanosine a 1 and day 3 in relation to mech ventilation among neonates with RDS	anical	89
Figure (12):	Levels of 8-Hydroxy-desoxyguanosine a 1 and day 3 in relation to mortality a neonates with RDS	among	89
Figure (13):	Negative correlations between day 1 lev 8-Hydroxy-desoxyguanosine and gesta age and occiptofrontal circumference a neonates with RDS.	ational among	93

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Negative correlations between day 1 8-Hydroxy-desoxyguanosine and birt among neonates with RDS.	h weight
Figure (15):	Positive correlations between day 1 8-Hydroxy-desoxyguanosine and durventilation and hospital stay among with RDS.	ration of neonates
Figure (16):	Positive correlations between day 1 8-Hydroxy-desoxyguanosine and C malondialdehyde among neonates with	O2 and
Figure (17):	Positive correlations between day 1 total antioxidant capacity and cop zinc among neonates with RDS	per and

List of Abbreviations

Abb.	Full term
AAP	.American Academy of Pediatrics
	Advanced Oxidation Protein Products
	Adenosine triphosphate
	Bronchopulmonary dysplasia
CAT	
<i>CBC</i>	.Complete blood count
	.Congenital Diaphragmatic Hernia
CH	2 2
CO2	.Carbon dioxide
CoQ10	.Coenzyme Q10
<i>CPAP</i>	.Continuous positive airway pressure
<i>CRP</i>	.C-Reactive Protein
Cu	.Cupper
DA	.Ductus arteriosus
dL	.Deciliter
DNA	.Deoxyribonucleic acid
<i>ELBW</i>	.Extreme low birth weight
ELISA	.Enzyme-linked immunosorbent assay
FR	.Free radical
FRC	.Functional Residual Capacity
gm	.gram
<i>GPX</i>	$. Glut althione\ peroxidase$
<i>GPx</i>	$. Glutathione\ peroxidase$
<i>GSH</i>	.Reduced glutathvone
<i>GSSG</i>	.Oxidized Glutathione
<i>GV</i>	$. Guarante ed\ volume$
H_2O_2	.Hydrogen peroxide
Hb	.Haemoglobin
HFOV	.High frequency oscillatory ventilation

List of Abbreviations (Cont...)

Abb.	Full term
<i>HMD</i>	Hyaline membrane disease
<i>HO</i> •	Hydroperoxyl
HOCl	Hypochlorous acid
<i>HPLC</i>	High-performance liquid chromatography
<i>IL-6</i>	Interleukin -6
<i>IL-8</i>	Interleukin-8
<i>IPPV</i>	Intermittent positive pressure ventilation
<i>IV</i>	Intravenous
<i>IVH</i>	Intraventricular hemorrhage
<i>Kg</i>	Kilogram
<i>LBW</i>	Low birth weight
<i>LDL</i>	Low-density lipoproteins
<i>MAS</i>	Meconium aspiration syndrome
<i>MDA</i>	Malon dial de hy de
<i>ml</i>	Milliliter
mmol/l	Millimole/liter
<i>MV</i>	Mechanical ventilation
<i>NADH</i>	Nicotinamide adenine dinucleotide hydride
<i>NADPH</i>	nicotinamide adenine dinucleotide
	hydridephosphate
<i>NEC</i>	Necrotizing enterocolitis
ng	N anogram
	Neonatal intensive care unit
<i>NO</i>	Nitric oxide
<i>NO</i> +	Nitrosil
	Free radical nitric dioxide
	Singlet oxygen
$O_2 \bullet^-$	Superoxide anion

List of Abbreviations (Cont...)

Abb.	Full term
<i>O</i> ₃	
<i>OD</i>	Optical density
<i>OFC</i>	Occipitofrontal Circumference
<i>OH</i> •	Hydroxyl radical
<i>P-A view</i>	Posteroanterior view
<i>PDA</i>	Patent ductus arteriosus
<i>PEEP</i>	Positive end expiratory pressure
Pg	Picogram
PH	Power of hydrogen
PLs	Phospholipids
<i>PROM</i>	Premature rupture of membrane
PUFAs	Polyunsaturated fatty acids
PVL	Periventricular leukomalacia
<i>RDS</i>	Respiratory distress syndrome
<i>RNS</i>	Reactive nitrogen species
<i>RO</i> •	Alkoxyl
<i>ROO</i> •	Peroxyl
<i>ROOH</i>	Hydroperoxide
ROP	Retinopathy of prematurity
ROS	Reactive oxygen species
SOD	Superoxide dismutase
STORCH	Syphilis, Toxoplasmosis, Other
	agents, Rubella, Cytomegalovirus, Herpes simplex.
<i>TAC</i>	Total antioxidant capacity
<i>TBA</i>	Thiobarbituric acid
<i>TBARS</i>	Thiobarbituric Acid Reactive Substances
<i>TNF-a</i>	Tumor necrosis factor alpha

List of Abbreviations (Cont...)

Abb.	Full term
<i>TPN</i>	.Total parenteral nutrition
<i>TTN</i>	.Transient tachypnea of newborn
<i>UK</i>	.United Kingdom
umol	. Micromole
<i>USA</i>	.United States of America
<i>VLBW</i>	.Very low birth weight
Wk	. Weak
Zn	.Zinc
μg	.Microgram
μl	.Microliter
°C	. Celsius
<i>10</i> ₂	.Singlet oxygen
8-OHdG	. 8- Hydroxy-desoxy guano sine

ABSTRACT

Background: Preterm neonates with respiratory distress syndrome are at high risk of oxidative stress and they are very susceptible to free radical oxidative damage. In nuclear and mitochondrial DNA, 8-hydroxy-2' deoxyguanosine (8-OHdG) is one of the predominant forms of free radical-induced oxidative lesions, and has therefore been widely used as a biomarker for oxidative stress. Aim: To assess oxidant-antioxidant balance in preterm neonates with RDS as well as the role of lipid peroxidation and oxidative DNA damage in the development of neonatal RDS. Methods: the study included 80 preterm neonates less than 34 weeks of gestational age; 40 had RDS and 40 without RDS enrolled as controls. All newborns were subjected to detailed medical history, thorough clinical examination. The degree of respiratory distress was assessed according to Down score. Respiratory distress grade was determined according to chest X ray. Laboratory investigations included complete blood count, random blood sugar, arterial blood gases, total antioxidant capacity (TAC), malondialdehyde (MDA) as an index of lipid peroxiadation, 8-OHdG levels by ELISA and trace elements (copper, zinc, calcium, magnesium and iron). Results: Neonates with RDS had lower birth weight and gestational age in comparison to control group. There was no significant difference in maternal age, parity, mode of delivery, PROM, maternal disease and steroid intake between mothers of neonates with RDS and control group. TAC, MDA and 8-OHdG were significantly high compared with control group. No significant difference was found as regard trace elements (zinc, calcium, magnesium, iron) except for copper which was significantly lower in neonates with RDS. TAC was significantly lower among neonates with RDS at day 3 compared with day 1 while MDA and AOPPs, 8-OHdG were significantly higher at day 3. 8-OHdG levels at day 1 and day 3 were significantly higher in neonates in RD grade 4 compared with those in grades 2 or 3 and among patients on mechanical ventilation as well as those with positive CRP values. 8-OHdG levels at day 3 were also significant in relation to mortality. 8-OHdG levels at days 1 and 3 are negatively correlated to gestational age. birth weight, OFC and PH. There was significant positive correlation with each of maternal age, duration of ventilation and duration of hospitalization as well as MDA and CO2. Multivariable regression model showed that maternal age, gestational age, birth weight, OFC, duration of ventilation, duration of hospitalization and MDA were the significant independent variables related to elevated 8-OHdG levels at day 1 and 3. **Conclusions:** Oxidative stress is induced in neonates with RDS which is manifested as increased lipid peroxidation and oxidative DNA damage. This is accompanied by alterations in the antioxidant defense status which may also play a role in the pathogenesis of RDS. AOPPs could be considered a reliable novel marker for oxidative stress among neonates with RDS. It is necessary to limiting exposure of the preterm infants to oxygen at high percentage and to high positive pressure during resuscitation and subsequent ventilation.

Keywords: Oxidative DNA Damage, Lipid Oxidation, Antioxidant Activity and Respiratory Distress Syndrome