

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Alexandria University Faculty of Veterinary Medicine Edfina

A STUDY ON SOME HYDROLASES IN SHEEP FASCIOLIASIS

A THESIS

Presented to Alexandria University for the Degree

of

PHILOSOPHY DOCTOR (pl. D.)

Biochemistry and Clinical Biochemistry

By

Fayza Abdel Aziz El-Tedawy

B.V.Sc. Vet. Med. Alexandria University, 1987 M.V.Sc. Vet. Med. Alexandria University, 1997

> EGYPT 2001

3

(قرار لجنة الحكم والمناقشة)

قررت لجنة الحكرة والمناقشة ترشيح السيدة ط. ب/ فايزة عبد العزيز التداوى - للحصول على درجة دكتوراه الفلسفة في العلوم الطبية البيطرية (تخصص الكيمياء الحيوية والكيمياء الحيوية الإكلينيكية)

أ.د عمر الأحمدي عيسوي

يه معن شمس - ووكيل الكلية

أ.د. مهدى عبد الحميد قرشـــم

شهدى حبد الحيوية بكلية الطب البيطب الكيمياء الحيوية بكلية الطب البيطب وي حامعة الاسكندرية

أ.د عبد الوهاب على منــــدور

مبد الوهاب على مندور أستاذ الكيمياء الحيوية بكلية الطب بالبيط رى جامعة الاسكندرية - (والمشرف على الرسالة)

أ.د محمود عصمت بلبسع

أستاذ الكيمياء الحيوية بكلية العلــــــوم جامعة الاسكندرية - (والمشرف علــــى الرســـالة)

Under Supervision

of

Prof. Dr. Nabil Mohamed Taha
Professor of Biochemistry
Faculty of Vet. Medicine
Alexandria University

Prof. Dr. Abdel Wahab Ali Mandour
Professor of Biochemistry
Faculty of Vet. Medicine
Alexandria University

Prof. Dr. Mahmoud Mohamed Esmat Balbaa
Professor of Biochemistry, Dept. of Biochemistry
Faculty of Science
Alexandria University

Prof. Dr. Rodaat Metawe
Professor of Biochemistry
Institute of Animal Health Research
Dokki, Cairo

الله الحجابي

THER SOR

ACKNOWLEDGMENT

Thanks forever to ALLAH who is always helping me, as he help all who search for the truth, because he is the truth.

I am deeply greatful to my supervisor prof. Dr. Nabil Mohamed

Taha Professor of biochemistry, Faculty of Vet. Med. Alexandria

University.

I would like to express my thanks to **Prof. Dr. Abdel Wahab Ali Mandour** Professor of biochemistry, Faculty of Vet. Med. Alexandria

University for his help and encouragement.

I wish to express my sincere gratitude to Mahmoud Mohamed Esmat Balbaa Professor of Biochemistry, Dept. of Biochemistry, Faculty of Science, Alexandria University for his guidance and assistance during the study.

I am greatly indebted to **Prof. Dr. Rodaat Metawe** Professor of Biochemistry, Institute of Animal Health Research, Dokki, Cairo for his assistance and advice.

CONTENTS

Title	Page
List of abbreviations	i
List of tables	ii
List of figures	V
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Fasciolasis	4
2.2. Hydrolases	9
2.2.1. Sulfatases	10
2.2.1.1. Arylsulfatase A	11
2.2.1.2. Arylsulfatase B	14
2.2.2. β-D-Glucuronidase enzyme	17
2.2.3. α-Amylase	20
2.2.4. Lipase	22
2.2.5. Leucine amino peptidase	25
2.2.6. Phosphatases	28
3. MATERIALS AND METHODS	31
3.1. Materials	31
3.1.1. Samples	31
3.1.2. Chemicals and reagents	32
3.2. Methods	36
3.2.1. Liver homogenization	36
3.2.2. Enzyme assay	36
3.2.2.1. Assay of arylsulfatase A in serum and tissues	36
3.2.2.2. Assay of arylsulfatase B in serum and tissues	37
3.2.2.3. Assay of β-D-gluguronidase	37
3.2.2.4. Assay of lipase in both serum and tissues	41
3.2.2.5. Assay of α -amylase in serum and tissues	42

3.2.2.6. Assay of leucine amino peptidase in serum and tissues	43
3.2.2.7. Assay of alkaline phosphatase	44
3.2.3. Protein determination	45
3.2.4. Standard curve of protein	45
3.2.5. Fractionation of arylsulfatases by ion exchange chromatography	46
3.2.6. Kinetic studies of ASA and ASB	47
3.2.6.1. Time courses of enzyme	47
3.2.6.2. Heat stability	48
3.2.6.3. Effect of enzyme concentration	48
3.2.6.4. Effect of different substrate concentration	48
3.2.7. Kinetic studies of β-D-glucuronidase	49
3.2.7.1. Time course	49
3.2.7.2. Leat stability:	49
3.2.7.3. Effect of enzyme concentration	50
3.2.7.4. Effect of different substrate concentration	50
3.2.8. Statistical analyses	50
4. RESULTS	51
4.1. Change of some hydrolases in serum and liver tissue of sheep infested with fasciolasis	51
4.1.1. Hydrolases in serum	51
4.1.2. Hydrolases in liver tissue	52
4.2. Fractionation of arylsulfatases by ion exchange chromatography	53
4.3. Kinetic studies of ASA and ASB from liver tissue of sheep infested with fasciolasis	54
4.4. Kinetic studies of β-D-glucuronidase	55
5. DISCUSSION	114
6. SUMMARY	119
7. REFERENCES	123
8. ARABIC SUMMARY	154

List of Abbreviations:

ASA Arylsulfatase A

ASB Arylsulfatase B

ASC Arylsulfatase C

LAP Leucine Aminopeptidase

ALP Alkaline Phosphatase

PNCS *p*-Nitrocatechol sulfate

2A2M1P 2-amino-2-methyl-1-propanol

PNPP *p*-nitrophenyl Phosphate

List of Tables:

Table 1:	Specific activities of arylsulfatase A in serum of sheep	
	infested with fascioliasis compared to control. Specific	
	activity is expressed as nmol of p-nitrocatechol/h/mg	
		56
	protein.	50
Table 2:	Specific activities of arylsulfatase B in serum of sheep	
	infested with fascioliasis compared to control. Specific	
	activity is expressed as nmol of p-nitrocatechol/h/mg	
	protein.	58
Table 3:	Specific activities of β-D-glucuronidase in serum of sheep	
	infested with fascioliasis compared to control. Specific	
	activity is expressed as µmol of product/min/mg protein.	
		60
Table 4:	Specific activities of lipase in serum of sheep infested with	
	fascioliasis compared to control. Specific activity is	
	expressed as mU/mg protein.	62
Table 5	Specific activities of alkaline phosphatase in serum of sheep	
Table 3.	infested with fascioliasis compared to control. Specific	
	activity is expressed as mU/mg protein.	64
T 11. (.		0.
Table 6:	Specific activities of amylase in scrum of sheep infested with	
	fascioliasis compared to control. Specific activity is	((
	expressed as mU/mg protein.	66
Table 7:	Specific activities of leucine aminopeptidase in serum of	
	sheep infested with fascioliasis compared to control.	
	Specific activity is expressed as mU/mg protein.	68
Table 8:	Specific activities of arylsulfatase A in sheep liver infested	٠ -
	with fascioliasis compared to control. Specific activity is	
	expressed as nmol of p-nitrocatechol/h/mg protein.	70

Table 9: Specific activities of arylsulfatase B in sheep liver infested	
with fascioliasis compared to control. Specific activity is	
expressed as nmol of p-nitrocatechol/h/mg protein.	72
Table 10: Specific activities of β -D-glucuronidase in sheep liver	
infested with fascioliasis compared to control. Specific	
activity is expressed as µmol of product/min/mg protein.	74
Table 11: Specific activities of lipase in sheep liver infested with	
fascioliasis compared to control. Specific activity is	
expressed as mU/mg protein.	76
Table 12: Specific activities of alkaline phosphatase in sheep liver	
infested with fascioliasis compared to control. Specific	
activity is expressed as mU/mg protein.	78
Table 13: Specific activities of amylase in sheep liver infested with	
fascioliasis compared to control. Specific activity is	
expressed as mU/mg protein.	80
Table 14: Specific activities of leucine aminopeptidase in sheep liver	
infested with fascioliasis compared to control. Specific	
activity is expressed as mU/mg protein.	82
Table 15: Specific activities of hydrolases in the serum of control and	
infested sheep with fascioliasis.	84
Table 16: Specific activities of hydrolases in the liver extract from	
control and infested sheep with fascioliasis.	85
Table 17: Time course of the reaction of hepatic arylsulfatase A from	•
control and infested sheep with fascioliasis.	88
Table 18: Effect of different temperature on the specific activity of	0.0
hepatic arylsulfatase A from control and infested sheep.	90
Table 19: Effect of enzyme concentration on the hepatic arylsulfatase	00
A from control and infested sheep.	92