OPTIC NERVE CHANGES AND OCULAR BLOOD FLOW STUDY WITH GLAUCOMA

An Essay
Submitted for partial fulfillment of
Master Degree in Ophthalmology

By Ahmed Ibrahim Aldesouky

M.B.B.Ch Faculty of medicine ,Tanta University

Supervised by

Prof. Dr. NAGM ELDIN HELAL

Professor of Ophthalmology Faculty of medicine Ain Shams University

Dr. BASSAM AHMED EL-KADY

Assistant Professor of Ophthalmology Faculty of medicine Ain Shams University

> Ain Shams University Cairo 2010

دراسه تغيرات العصب البصري وتدفق الدم في حالات المياه الزرقاء

رسالة مقدمة

توطئه للحصول على درجة الماجستير في طب وجراحة العيون مقدمة من

الطبيب/أحمد ابراهيم الدسوقي بكالوريوس الطب والجراحة كلية الطب - جامعة طنطا

تحت إشراف

الأستاذ الدكتور/نجم الدين هلال أستاذ طب و جراحة العيون كلية الطب جامعة عين شمس

الدكتور/بسام أحمد القاضي مدرس طب و جراحة العيون كلية الطب- جامعة عين شمس

جامعه عين شمس

القاهرة ٢٠١٠

<u>ACKNOWLEDGMENT</u>

First and foremost I thank "ALLAH" the most merciful to whom I relate any success in achieving any work in my life.

I find no word by which I can express my sincere appreciation and deepest gratitude to Prof. Dr. NAGM ELDIN HELAL, professor of ophthalmology faculty of Medicine, Ain Shams University, for his continuous supervision, guidance, effort and constructive encouragement throughout all this work. I was very honored to work with him.

I would like to express my deepest thanks and appreciations to Prof. Dr, BASSAM AHMED EL-KADY, assistant professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his great help and effort to make this work possible.

I am expressing my gratitude to my mother, to the memory of my father who taught me the first step of success, to my wife and daughter Malak and all the members of my family for their help and support they gave to me throughout this work.

Ahmed Ibrahim Aldesouky

Table of contents List of abbreviation.....i-ii List of figures.....iii-v Introduction......1-5 Chapter 1: Anatomy 6-13 Parts of ONH7 Anatomy of the Lamina Cribrosa.....8 General Anatomy of the ONH Blood Supply10 Variations in Blood Supply of the ONH......12 Venous Drainage of the ONH13 **Chapter 2:** PATHOGENESIS OF GLAUCOMA......14-36 Glaucomatous Optic Neuropathy......16 Role of intraocular pressure and ocular blood flow in the pathogenesis of glaucoma20 Role of Intraocular Pressure in Glaucoma21 Role of Ocular Blood Flow in Glaucoma22 Findings of Ocular Blood Flow Studies in Glaucoma and their Interpretation22 Potential Mechanisms of Ocular Blood Flow Reduction in Glaucoma Patients24 Current Evidence of Abnormal Ocular Blood Flow in Glaucoma28 **Chapter 3:** Techniques used for evaluation of ocular blood flow37-66 COLOR DOPPLER IMAGING40 PULSATILE OCULAR BLOOD FLOW & FUNDUS PULSATION AMPLITUDE......43 FLUORESCEIN AND INDOCYANINE GREEN ANGIO- GRAPHY......46 LASER DOPPLER VELOCIMETRY......49 LASER DOPPLER FLOWMETRY50 SCANNING LASER DOPPLER FLOWMETRY......53 LASER SPECKLE TECHNIQUE......56 RETINAL VESSEL ANALYSER.....57 CANON LASER BLOOD FLOWMETER.....59 BLUE FIELD ENTOPTICS......61 PERIPHERAL BLOOD FLOW......62

Limitations of Ocular Blood Flow Assessment Techniques and their

Interpretations	65
Chapter 4:	
OCULAR BLOOD FLOW AND ANTIGL	.AUCOMA
DRUGS	
ADRENERGIC AGONISTS	
ADRENERGIC ANTAGONISTS	
CHOLINERGIC DRUGS	
PROSTAGLANDIN ANALOGUES	
CARBONIC ANHYDRASE INHIBITORS(CAIs)	
THE EFFECTS OF SYSTEMIC MEDICATIONS ON OC FLOW	95
CALCIUM CHANNEL BLOCKERS	95.
INHIBITORS OF THE RENIN-ANGIOTENSIN SYSTEM	99
GINKGO BILOBA	100
DIPYRIDAMOLE	101
Chapter 5:	
NEUROPROTECTION AND NEURORES	CUE
102	=
Ocular blood flow changes and ischemia: Role in Glauc	oma
Neuroprotective therapy	107
Potential Approaches To Neuroprotection	108
Blood Flow Enhancers	108
Summary	111-115
References	116-147
Summary in Arabic	.148-149

LIST OF ABBREVIATIONS

ACE	Angiotensin converting enzyme	
AION	Anterior ischemic optic neuropathy	
AVP	Arterio venous pulsation	
CAIs	CARBONIC ANHYDRASE INHIBITORS	
CCBs	Calcium channel blocker	
C/D	Cup disc ratio	
CDI	Color Doppler imaging	
CLBF	Canon laser blood flowmeter	
CME	Cystoid macular edema	
C02	carbon dioxide	
CRA	Central Retinal Artery	
CRV	Central Retinal Vein	
DSFS	Doppler shift frequency spectrum	
EDV	End diastolic velocity	
FA	Fluorescein Angiography	
FLO	Blood flow	
FPA	Fundus pulsation amplitude	
GBE	Ginkgo biloba extract	
GON	Glaucomatous optic neuropathy	
HTG	High-tension glaucoma	
HRF		
<i>ICG</i>	Indocyanine green	
IOP	Intra-Ocular Pressure	
ISA	Intrinsic sympathomimetic activity	
LDF	laser Doppler flowmetry	
LDV	laser Doppler velocimetry	
<i>LGN</i>	Lateral geniculat nucleus	
LTG	low tension glaucoma	
MD	Mean defect	
MMPs	Metalloproteinases	
NFL	The nerve fiber layer	
NMDA	N-Methyl-D-Aspartate	
NO	Nitric oxide	
NTG	Normal-tension glaucoma	
02	Superoxide anion	
OA	Ophthalmic artery	
OAG	Open angel glaucoma	

OBF	Ocular blood flow
OCT	Optical coherence tomography
OHT	Ocular hypertension
ONH	Optic nerve head
ONOO	Peroxynitrite
OODG	Oculo oscillo dynamography
OPA	Ocular pulse amplitude
OPP	Ocular perfusion pressure
<i>PCAs</i>	Posterior ciliary arteries
PP	Perfusion pressure
POBF	Pulsatile ocular blood flow
PSV	peak systolic velocity
RGC	Retinal ganglion cell
RI	Resistivity index
RNFL	Retinal Nerve Fiber Layer
ROI	Retinal region of interest
RPE	Retinal pegment epithelium
SLDF	Scanning laser Doppler flowmetry
SLO	Scanning laser ophthalmoscopy
SPCAs	Short posterior ciliary arteries
TM	Trabecular meshwork
Vel	Relative speed of the red blood cells in the sampling volume
Vol	Relative number of moving red blood cells in the sampling volume

LIST OF FIGURES

Figures No.	Comment		
1	A longitudinal section through the optic nerve	8	
2	Scanning electron microscopic analysis of a normal human ONH		
3	Structure of the optic nerve.		
4	Schematic representation of blood supply of the optic nerve		
5	Microvascular corrosion cast of human optic nerve showing posterior ciliary arteries and pial arteries		
6	Simplified pathogenetic concept of glaucomatous optic neuropathy	15	
7	The simultaneous increase of NO and O2leads to the formation of peroxynitrite	16	
8	The loss of retinal ganglions cells and their axons and tissue remodeling involving both the optic nerve head and the retina.		
9	Activated astrocytes lead to increased lightscattering as demon- strated in a red-free fundus-photo	18	
10	Activated astrocytes and Muller cells in the retina of a healthy patient (A) and a glaucoma patient (B) (GFAP staining		
11	The higher the IOP ,the higher the chance of progression 20 .like wise the lower the OBF the higher the chance of progression		
12	: Nocturnal hypotension in progressive visual field loss	26	
13	Average blood flow velocity in the ophthalmic artery, central retinal ar tery, lateral cilliary arteries, medium cilliary arteries in normals and glaucoma patients.	29	
14	Correlations between IOP and visual field mean defect MD in two distinct OAG populations; vasospastic and atherosclerotic. Courtesy		
15	Color Doppler image of the central retinal artery and vein taken with a 7.5 MHz linear probe	40	
16	Pulsatile ocular blood flowmeter		
17	Fluorescein fundus angiogram of the optic nerve head and peripapillary retina		
18	This fluorescein angiography shows a diffuse staining of the papilla in a glaucoma patient.	46	
19	Principle of Doppler velocimetry	48	
20	Schematic view of the light-scattering model underlying tissue flowmetry.	50	
21	the formation of image speckle		
22	the formation of farfield speckle	53	
23	The blood flow can be displayed by combining the laser scanning of the Heidelberg retina tomograph with the laser Doppler principle	53	

24	Heidelberg retinal flowmeter	
25	Retinal Vessel Analyzer	57
26	CLBF measurement of the inferior temporal retinal arter	59
27	Nailfold capillaries	60
28	Average blood flow velocity in nailfold capillaries before and after warm and cold provocation in normals and glaucoma patients.	64
29	Ocular blood flow changes and ischemia: Role in Glaucoma	105
30	Calcium channel blockers interrupt pathways for Ca ²⁺ influx and glutamate release	109

INTRODUCTION

INTRODUCTION

Glaucoma is an optic neuropathy characterized by a pathological process called cupping, which is a type of optic atrophy, this produce a nerve fiber layer defect that result in visual field loss. Glaucoma is often, but not always associated with elevated Intraocular Pressure "IOP" (Stamper et al. 1999).

Glaucomatous changes in the optic disc (optic nerve head) usually can be detected over time. If the optic cup within the optic disc increases in size over a period of months or years, if notching is observed anywhere around the nerve head rim, and/or if an asymmetry is observed between the optic cups of the two eyes, then that person may be considered to be a "glaucoma suspect." In glaucoma, optic nerve rim atrophy and / or notching, with a corresponding visual field loss, usually will occur in this order:

Optic Nerve defect	Visual Field Loss
1. Inferior defect Superior Fie	
2. Superior defect	Inferior Field
3. Temporal defect	Nasal Field
4. Nasal defect	Temporal Field

(Detorakis et al. 2007).

The pathogenesis of nerve fiber defects in glaucoma is still obscure. There is ample evidence that an elevated intraocular pressure (IOP) can induce visual field loss in the affected eye. However, many patients can come with elevated IOP without damage to the optic nerve fibers. Patients with low tension glaucoma (LTG) and thus an IOP between 10 and 20 mmHg develop visual field defects without an elevated IOP, indicating that even an IOP in the normal range is too high for these patients or other factors are involved in visual field loss (Quigley et al. 1982).

In pathogenesis of glaucoma, it is recognized that raised IOP can't be the only risk factor leading to glaucomatous damage. In normal tension glaucoma(NTG), vascular factors are considered to play a pathogenic role, so if raised IOP and reduced blood flow are accepted as a major causes of glaucomatous damage to optic nerve, it is expected that elimination of these causes may stop or slow progression of glaucomatous damage (Harris et al. 1997a).

Ocular perfusion pressure is the difference between blood pressure and IOP (blood pressure-IOP) thus;a drop in the perfusion pressure can be caused by drop in the blood pressure or rise in the IOP. Blood flow can be linked to perfusion pressure in the following equation:

Blood flow=perfusion pressure/resistance

Thus, a drop of the blood flow can be caused by the drop in perfusion pressure or rise in resistance (Kaiser et al. 1993).

Visual field loss, caused by optic nerve damage, is measured by using a "visual field analyzer" or "perimeter," especially by measuring and comparing changes over time. The procedure is known as "perimetry". Most field loss due to glaucoma usually is not even measurable until 25% to 40% of the optic nerve axons have been destroyed (Galassi et al. 2003).

New instruments have been developed to measure ocular blood flow including blood flow in the optic nerve head. Several studies indicate that a perfusion instability, rather than a steady reduction of ocular blood flow might contribute to glaucomatous optic neuropathy (Grieshaer and Flammer. 2007).

Laser Doppler flowmetry detect circulatory abnormalities in primary open angle glaucoma suspects who did not have any manifest visual field defect. Laser Doppler flowmetry was used to measure optic nerve head blood velocity ,volume and flow at four quadrants in the optic nerve,in the cup and in the foveola (Piltz-Seymour et al . 2001) .

In another study, the authors evaluated by means of color doppler imaging, the blood flow of the ophthalmic artery, ciliary arteries and central retinal artery in normal and glaucomatous subjects. In normal subjects they found that flow velocities of all considered vessels progressively declined while sensitivity indices increased with advancing age. In glaucomatous patients there was reduction of the means systolic peak flow velocity of the ophthalmic artery in comparison with normals (Galassi et al. 1994).

The nerve image analysis techniques which use scanning laser ophthalmoscopy (SLO), tomography, and laser Doppler flowmetery have improved the ability to study any changes of optic nerve head characters (Chauhan and Smith. 1997).

Measurement of ocular blood flow and optic nerve head (ONH) changes might help in early diagnosis of glaucoma and glaucoma suspects. This will be by seeing the relation between the ocular blood flow and the retinal nerve fiber layer which measured by Optical coherence tomography (OCT) which able to identify axonal loss in all four quadrants as will as in each of the twelve 30° segments of the disc thus it seems to be a promising instrument in the diagnosis and follow up of neuro-ophthalmic conditions responsible for retinal nerve fiber layer (RNFL) loss. Even if predominantly in the nasal and temporal areas of the optic disc; Thus it will help in screening of glaucoma between people with family history of glaucoma (Chauhan and Smith . 1997).

By measuring the ocular blood flow and its effect on the optic nerve head (ONH) become arole for anew group of anti glaucomatous drugs like neuroprotective drugs in the treatment of glaucoma which has a role in improvement of ocular blood flow of ONH. Many drugs are under investigation for this purpose . Some data from neurologic studies indicate that gingko biloba may be helpful. There are multiple ways in which non pressure related medicine may help treat the ganglion cell death that is glaucoma . It is likely that some types of neuroprotective agent will become an important adjunctive therapy for glaucoma in the future (piltz Seymour et al .2001).

AIM OF THE WORK

To review and discuss methods of studying changes in the optic nerve and blood flow dynamics in glaucoma,thus helping to understand the etiology of this disease , and to improve methods of diagnosis and means of management