

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

A study of the Anticarcinogenic Effect of certain Flavonoidal Constituents of Some Local Egyptian Foods Against Dietary Carcinogens

Thesis

submitted to the High Institute of Public Health in partial fulfillment of the requirements for the Degree of Master of Public Health Sciences

(Nutrition)

Вy

Soad Mohamed Ahmed Gabara

B. Sc. Faculty of Science - Alexandria University - 1977

D.P.H. Nutrition - High Institute of Public Health - Alexandria University. 1985

D.P.H. Food Analysis - High Institute of Public Health - Alexandria University. 1995

High Institute of Public Health Alexandria University 2001

gacio

Acknowledgment

First of all, I would like to express my profound sincere gratitude to Allah for every thing and for blessing this work.

I would like to express my special appreciation to my supervisor **Professor Dr. Ezzat Khamis**, Professor of Nutrition and Dean of HIPH for his sincere help and generous support.

It gives me pleasure to acknowledge the help of Professor Dr. Hoda Abou Sief, Professor of Pathology at Medical Researches Institute, Alexandria University, whose endeavors greatly facilitate my task

I am happy to put on record the caluable aid provided by all my colleagues and the technicians and workers of nutrition department at HIPH.

My gratitude is also extended to Dr. Abd Allah Shemilla, for all his valuable advices from the beginning to the end of the work.

I would like to acknowledge **Dr. Wakabayshi K.** National Cancer Institute, Tokyo-Japan for his valuable and generous gift Trp1 and Trp2.

I can not possibly end this acknowledgement without expressing my feeling towards the mice used in this study. I hope they have been sacrificed for worthwhile cause.

List of contents

Chapters			Page
Chapter I	•	Introduction	1-33
Chapter II	:	Aim of the work	34
Chapter III	•	Material and Methods	35-47
Chapter IV	:	Results	48-69
Chapter V	.:	Discussion	70-79
Chapter VI	:	Summary	80-84
Chapter VII	:	Conclusion	85
Chapter VIII.	:	Recommendations	86-87
Chapter IX	:	References	88-99
,		Protocol	
		Arabic summary	
		List of tables	
		List of figures	
,		List of abbreviations	

List Of Tables

Fable		page
(1)	Some rodent carcinogens present in plants.	3
(2)	Some dietary anticarcinogens /anti-mutagens.	6
(3)	Human P450 enzymes involved in activation of	26
	HCAs.	
(4)	Quantitative estimation of A, K, Q in some	53
	fruits.	
(5)	Quantitative estimation A, K, Q in some	55
	vegetables.	
(6)	Quantitative estimation A, K, Q in some herbs.	57
(7)	Percentage of deaths in mice groups treated s	60
•	with L and /or TrP ₁ .	
(8)	Percentage of deaths in mice groups treated	61
	with O and /or TrP ₂ .	

List of Figures

Figure		Page
(1)	Flavone structures	10
(2)	Flavonol structure	11
(3)	Hetero cyclic amine sturctures	29
(4)	Separation of luteolin by P.C	49
(5)	UV spectra of separated luteolin	50
(6)	IR spectra of separated luteolin	51
(7)	Bar chart indicate the percentage of deaths in mice groups treated with L and/or Trp ₁ .	60 -
(8)	Bar chart indicate the percentage of deaths in mice groups treated with Q and/or Trp2.	61
(9)	Section of mice liver receiving 800 ppm-L	64
(10)	Section of liver mice receiving 6000 ppm-Q	64
(11)	Section of mice liver receiving 800 ppm- before administration of 50ppm- Trp ₁ .	65

(12)	Section of mice liver receiving 800 ppm-L before administration of 50 ppm-Trp ₁ .	65
(13)	Section of mice liver receiving 800 ppm-L before administration of 50 ppm-Trp ₂ .	66
(14)	Section of mice liver receiving 6000 ppm-Q after administr5ation of 50 ppm-Trp ₂ .	65
(15)	Section of mice liver receiving 800 ppm-L after administration of 50 ppm-Trp ₁ .	66
(16)	Section of mice liver receiving 800 ppm-L after administration of 50 ppm-Trp ₁ .	67
(17)	Section of mice liver receiving 50 ppm-Trp ₁ .	67
(18)	Section of mice liver receiving 50 ppm-Trp2.	68
(19)	Section of mice liver receiving 50 ppm-Trp2.	69

Chapter 1

ı

ļ

List of Abbreviations

PAHs : Polycyclic hydrocarbons

HAs : Heterocyclic amines

 AFB_1 : Aflatoxin B_1

Vit. A : Retinoids

Vit. E : Tocopherols

UV : Ultra violet

PC : Paper chromatography

R_f : Relative position on P.C.

Q : Quercetin

K : Kaempferol

M : Myricetin

Qmg : Quercetin monoglucoside

Qdg : Quercetin diglucoside

μ**gm** : Microgram

mg/L : Milligram per litre

TAA : Total antioxidant activity

BHT : Propyl galate

TBHQ : t-butyl hydroquinone (BHA)

S.C. : Subcutaneous

LD₅₀ : Lethal dose

I.V. : Intravenous

ppm ; Part per million

I.C. : Inhibition concentration

y-irradiation

Gamma rays

IQ

: 2-amino-3-methyl imidazo[4,5-f]quinoline

n.mol/ml

: Nano mole per mellilitre

HCAs

: Heterocyclic aromatic amines

MelQ

: 2-amino-3,8-dimethyl imidazo[4,5-f]quinoxaline

PhIP

: 2-amino-1-methyl 1-6-phenylimidazo[4,5-b] pyridine

Glu-p-1

: 2 amino -6-methlyldipyrido[1,2-a:3 DUD, 2' -

d]imidazole

Glu-p-2

: 2-aminodipyido [1,2-a:3 [10]], 2`-d] imidazole

MeIQ

: 2-amino-3,4-dimethyl imidazo[4,5-f]quinoline

 Trp_1

: 3-amino-1,4-dimethyl-5H-pyrido[3,4-b]indole

Trp₂

: 3-amino-1-methyl-5H-pyrido[3,4-b]indole

P450s

Set of cytochrome enzymes which have maximum

spectra at 450 n.m.

CYP₃A₄,

 CYP_2C_9 ,

:Isoforms of cytochrome enzyme

 CYP_1A_2

: 1-o-hexyl-2,3,5-trimethyl hydroquinone

IUPAC

HTHQ

: Systemic name of compounds

E.A.

: Ethyl acetate

HCl

Hydrochloric acid

INTRODUCTION

Diet plays an important role in cancer development, both by increasing or reducing the risk of cancer. During the cooking of meats, several highly mutagenic heterocyclic amines are produced. On the other hand, epidemiological studies showed that the consumption of vegetables and fruits were negatively correlated with the incidence of human cancer in stomach, colon, breast, prostate and even lung and bladder. These exciting epidemiological discoveries have encouraged scientists to determine whether specific vegetable components are responsible for the observed associations. Flavonoids occur naturally in plant foods and are a common component of our diet. They occur in food as O-glycosides, and the estimated human oral daily consumption is about 0.02 gm/kgm/day^(1,2).

Adequate data on the occurrence of flavonoids in local Egyptian food are lacking. Food derived flavonoids such as flavonols (Quercetin, Kaempferol, Myricetin) and flavones (Apigenin and Luteolin), were purified chromatographically and their suppressing activity with *Salmonella typhimurium*. TA 98 has been reported⁽²⁾.