

LOCAL AND POST LOCAL BUCKLING OF HOLLOW AND CONCRETE FILLED BOX STEEL TUBES

By

Omar Saber Rizq Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

LOCAL AND POST LOCAL BUCKLING OF HOLLOW AND CONCRETE FILLED BOX STEEL TUBES

By Omar Saber Rizq Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Prof. Dr. Ahmed Foad Sabry

Professor of Steel Structures Structural Engineering Department Faculty of Engineering, Cairo University University Dr.Kamal Ghamry Metwally

Associate professor Civil Engineering Department Faculty of Engineering, Beni-Suef

LOCAL AND POST LOCAL BUCKLING OF HOLLOW AND CONCRETE FILLED BOX STEEL TUBES

By Omar Saber Rizq Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the Examining Committee:
Prof. Dr. Abdelrahim Khalil Dessouki, External Examiner
Prof. Dr. Mokhtar Mahmoud Seddeik, Internal Examiner
Prof. Dr. Ahmed Foad Sabry, Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Omar Saber Rizq Hassan

Date of Birth: 29/9/1988 **Nationality:** Egyptian

E-mail: omarsaber_civil@yahoo.com

Phone: 01007124347

Address: Kafr Taha, Shebin Elqanater, Qalioubia

Registration Date: 3/2012
Awarding Date:/2016
Degree: Master of Science
Department: Structural Engineering

Supervisors: Prof. Dr. Ahmed Foad Sabry

Dr.Kamal Ghamry Metwally Faculty of Engineering Beni-Suef University

Examiners: Prof. Dr. Abdelrahim Khalil Dessouki

Faculty of Engineering Ain Shams University

Prof. Dr. Mokhtar Mahmoud Seddeik

Porf. Dr. Ahmed Foad Sabry

Title of Thesis:

LOCAL AND POST LOCAL BUCKLING OF HOLLOW AND CONCRETE FILLED BOX STEEL TUBES

Key Words:

Concrete Filled Steel Tube (CFT); Hollow Steel Section; Local Buckling; Post Local Buckling; Finite element analysis.

Summary:

This research studies the local and post local buckling behavior of hollow and concrete filled box steel tubes. ANSYS program is used to model the specimens. The critical stresses and buckled shapes of ANSYS are compared to their corresponding results of experiments and mathematical solution. Eighty four models are implemented to conduct the parametric study which determined the effects of section slenderness ratio b/t ,yield strength of steel tube, and concrete infill on initial buckling stress σ_L , post local buckling stress σ_u , non dimensional critical stress σ_L/σ_y , and reserve strength σ_r which is gained due to the post local buckling.

Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisor Professor Dr. Ahmed Foad Sabry for his constant supervision, planning, guidance, valuable suggestions, precise advice and constant encouragement during all stages of this research work.

Also I would like to thank Dr. Kamal Ghamry for his precious contribution in using ANSYS software Package and for helpful suggestions, comments and encouragement throughout this thesis.

Table of Contents

TABLE OF CONTENTS	I
LIST OF TABLES	III
LIST OF FIGURES	IIV
ABSTRACT	VII
CHAPTER 1: INTRODUCTIONE	RROR! BOOKMARK NOT DEFINED.
1.1 GENERAL	ERROR! BOOKMARK NOT DEFINED.
1.2 RESEARCH OBJECTIVE	2
1.3 THESIS ORGANIZATION AND CONTENTS	ERROR! BOOKMARK NOT DEFINED.
CHAPTER 2: LITERATURE REVIEW AND	D BASIC VARIABLES ERROR! BOOKMARK NOT D
2.1 GENERAL	ERROR! BOOKMARK NOT DEFINED.
2.2 COMPOSITE CONSTRUCTION	ERROR! BOOKMARK NOT DEFINED.
2.2.1 General	Error! Bookmark not defined.
2.2.2 Historical Background	6
2.3 COMPOSITE COLUMNS TYPES	6
2.4 MECHANICAL BEHAVIOR OF COMPOSITE C	OLUMNS8
2.4.1 The Confinement in Concrete Filled Tube	e Columns8
2.4.2 Using High Strength Concrete in Concret	e Filled Tube Columns9
2.4.3 Local Buckling Effects	10
2.4.4 Elastic Flexural Rigidity EI	
2.4.5 Failure Modes of Composite Columns	
2.5 Past Research	14
2.6 THEORETICAL STUDY ON LOCAL AND POST	T LOCAL BUCKLING23
2.6.1 General	
2.6.2 Plate Buckling Behavior	
2.6.3 Elastic Local Buckling Stress of Steel Pla	
2.6.4 Buckling of Plates in the Inelastic Range.	
2.6.5 Von Karman Large Deflection Equations	
2.6.6 Post buckling and Effective Width Conce	•
2.7 COMPOSITE COLUMNS IN CODES	
2.7.1 Composite Columns Classification	
2.7.2 AISC-LRFD	
2.7.3 Euro-Code 4	
CHAPTER 3: MODELING AND VERIFICA	ATION 42
3.1 Introduction	
3.2 FINITE ELEMENT MODELING	13

3.2.1 Introduction	43
3.2.2 Numerical Methods Technique and Convergence	44
3.2.3 Buckling Analysis Methods in ANSYS	46
3.2.4 Modeling	49
3.2.5 Thin Plates Elastic Buckling	62
3.2.6 Thin Walled Hollow Tube Elastic Buckling	65
3.3 VERIFICATION OF EXPERIMENTAL TESTS	69
3.3.1 Introduction	69
3.3.2 Tests Description	70
3.3.3 Results and Comparison	71
3.4 SUMMARY AND CONCLUSION	86
CHAPTER 4: PARAMETRIC STUDY	87
4.1 Introduction	87
4.2 Independent Variables	88
4.3 PARAMETRIC ANALYSIS	91
4.3.1 Introduction	91
4.3.2 Models results	91
4.3.3 Effects of steel tube slenderness b/t	101
4.3.4 Effect of steel yield strength Fy	116
4.3.5 Effects of concrete infill	122
CHAPTER 5: SUMMARY AND CONCLUSIONS	131
5.1 General	131
5.2 Summary	131
5.3 CONCLUSION	132
5.4 RECOMMENDATIONS FOR FUTURE WORK	133
REFERENCES	

List of Tables

Table 2.1 Values of buckling coefficient K **Error! Bookmark not defined.**

Table 3.1	Mesh configurations parameters values	60
Table 3.2	Steel plates properties and results	62
Table 3.3	Steel plates and tubes critical stresses	65
Table 3.4	Sources data of verified specimens	69
Table 3.5	Verification specimens geometric and material properties	70
Table 3.6	Results of experiments and models for steel loaded only specimens	71
Table 3.7	Results of experiments and models for steel and concrete loaded	
specin	nens	72
Table 4.1	Geometric and material properties of study models	89
Table 4.2	List of Independent Variables	91
	Hollow steel tubes models results	93
Table 4.4	Filled steel tube models results	94

List of Figures

Fig. 2.1: Composite beam system	5
Fig. 2.2: Types of composite columns Error! Bookmark not defi	ined.
Fig. 2.3: Typical stress strain curve for concrete Error! Bookmark not defi	ined.
Fig. 2.4: Local buckling effects on concrete filled steel box columns performance E	rror! Bookmark not
Fig. 2.5: Slenderness ratio effects on the load-axial strain behavior of concrete fille	ed
steel box columnsError! Bookmark not defi	ined.
Fig. 2.6: Steel and concrete constitutive relations Error! Bookmark not defi	ined.
Fig. 2.7: Elelastic determination	ined.
Fig. 2.8: Local buckling modes of stiffened and unstiffened hollow and infilled	
columns Error! Bookmark not defi	ined.
Fig. 2.9: Behavior of perfect and imperfect systems during buckling mode interaction	on21
Fig. 2.10: Locally buckled thin walled steel tube	24
Fig. 2.11: Post buckling path of steel tube	25
Fig. 2.12: Rectangular plate subjected to compression stressError! Bookmark not	defined.
Fig. 2.13: Buckling od steel plate in contact with concrete	29
Fig. 2.14: The consecutive stages of stress distribution in stiffened compression	
elements	
Fig. 2.15: Typical cross sections of concrete filled tubular sections Error! Bookman	rk not defined.
Fig. 3.1: Newton-Raphson Method	44
Fig. 3.2: Bifurcation Buckling Error! Bookmark not defi	ined.
Fig. 3.3: Post Buckling BehaviorError! Bookmark not defi	ined.
Fig. 3.4: Solid 65 Geometry	ined.
Fig. 3.5: Solid 45 Geometry	50
Fig. 3.6: Target and Contact Geometry	51
Fig. 3.7: Typical uniaxial compressive and tensile stress-strain curve for concrete	52
Fig. 3.8: Simplified stress-strain curve for concrete	54
Fig. 3.9: Concrete stress-strain curve for specimen10&11	54
Fig. 3.10: Concrete failure surfaces	
Fig. 3.11: Steel stress strain relationship Error! Bookmark not defi	ined.
Fig. 3.12: Mesh configurations	
Fig. 3.13: Structural error energy of mesh 1 configuration	
Fig. 3.14: Structural error energy of mesh 6 configuration	
Fig. 3.15: Mesh configurations stress relationship	
Fig. 3.16: Boundary conditions	61
Fig. 3.17: Closed form solution versus ANSYS solution	63
Fig. 3.18: Buckled shape of plate 1	
Fig. 3.19: Buckled shape of plate 3	
Fig. 3.20: Buckled shape of plate 6	
Fig. 3.21: Plate results versus box results results	
Fig. 3.22: Typical hollow box tube buckled shape	
Fig. 3.23: Buckled shape of hollow box 7	
Fig. 3.24: Buckled shape of hollow box 8	
Fig. 3.25: Buckled shape of hollow box 9	
Fig. 3.26: Buckled shape of hollow box 10	68

Fig. 3.2/: Buckled shape and lateral displacement for SP5	. 73
Fig. 3.28: Buckled shape for SP6	. 73
Fig. 3.29: Deformed shape for SP10 (weak axis bending)	. 74
Fig. 3.30: Deformed shape for SP11 (strong axis bending)	
Fig. 3.31: Deformed shape of steel tube for SP9	
Fig. 3.32: Section in SP12	
Fig. 3.33: Axial shortening for SP12	. 76
Fig. 3.34: Local buckling stress of ANSYs and experiments	
Fig. 3.35: Post local buckling stress of ANSYS and experiments	
Fig. 3.36: Failure load of ANSYS and experiments	
Fig. 3.37: Stress axial shortening curve for SP2	
Fig. 3.38: Stress lateral displacement curve for SP2	
Fig. 3.39: Stress axial shortening curve for SP4	
Fig. 3.40: Stress lateral displacement curve for SP4	
Fig. 3.41: Stress axial shortening curve for SP6	
Fig. 3.42: Stress lateral displacement curve for SP6	
Fig. 3.43: Stress axial shortening curve for SP8	
Fig. 3.44: Stress lateral displacement curve for SP8	
Fig. 3.45: Load axial shortening curve for SP9	
Fig. 3.46: Load lateral displacement curve for SP9	
Fig. 3.47: Load axial shortening curve for SP10	
Fig. 3.48: Load lateral displacement curve for SP10	
Fig. 3.49: Load axial shortening curve for SP12	
Fig. 3.50: Load lateral displacement curve for SP12	. 85
Fig. 4.1: Stress lateral deflection curve of model 22 (hollow,b/t=100,Fy=240MPa) Fig. 4.2: Stress axial shortening curve of model 22 (hollow,b/t=100,Fy=240MPa)	. 95
Fig. 4.3: Stress lateral deflection curve of model 64 (Filled,b/t=100,Fy=240MPa)Err	
Fig. 4.4: Stress axial shortening curve of model 64 (Filled,b/t=100,Fy=240MPa)Err	
Fig. 4.5: Stress lateral deflection curve of model 34 (hollow,b/t=140,Fy=240MPa)E	
Fig. 4.6: Stress axial shortening curve of model34 (hollow,b/t=140,Fy=240MPa)	
Fig. 4.7: Stress lateral deflection curve of model 37 (hollow,b/t=150,Fy=240MPa)	
Fig. 4.8: Stress axial shortening curve of model 37 (hollow,b/t=150,Fy=240MPa)	
Fig. 4.9: Stress lateral deflection curve of model 76 (Filled,b/t=140,Fy=240MPa)	
Fig. 4.10: Stress axial shortening curve of model76 (Filled,b/t=140,Fy=240MPa)	
Fig. 4.11: Stress lateral deflection curve of model77 (Filled,b/t=150,Fy=240MPa)	
Fig. 4.12: Stress axial shortening curve of model77 (Filled,b/t=150,Fy=240MPa)	
Fig. 4.13: Effect of (b/t) on σL for hollow tubes (Fy =240 MPa)	
Fig. 4.14: Effect of (b/t) on σu for hollow tubes (Fy =240 MPa)	
Fig. 4.15: Effect of (b/t) on non dimensional critical stress $\sigma L/\sigma y$ for hollow tubes (Fig. 4.15).	=
=240 MPa)	105
Fig. 4.16: Effect of (b/t) on σr/σu for hollow tubes (Fy =240 MPa)	105
Fig. 4.17: Effect of (b/t) on σL for hollow tubes (Fy = 360 MPa)	100
Fig. A LX: Effect of (b/t) on $\sigma_{\rm H}$ for hollow tubes (Ey = 360 MPa)	
Fig. 4.18: Effect of (b/t) on σu for hollow tubes (Fy = 360 MPa)	106
Fig. 4.19: Effect of (b/t) on non dimensional critical stress $\sigma L/\sigma y$ for hollow tubes (Fig. 4.19).	106 ^F y
Fig. 4.19: Effect of (b/t) on non dimensional critical stress σL/σy for hollow tubes(F = 360 MPa)	106 Fy 107
Fig. 4.19: Effect of (b/t) on non dimensional critical stress σL/σy for hollow tubes (Fig. 4.20: Effect of (b/t) on σr/σu for hollow tubes (Fy =360 MPa)	106 Fy 107 107
Fig. 4.19: Effect of (b/t) on non dimensional critical stress $\sigma L/\sigma y$ for hollow tubes (F = 360 MPa)	106 Fy 107 107
Fig. 4.19: Effect of (b/t) on non dimensional critical stress σL/σy for hollow tubes (Fig. 4.20: Effect of (b/t) on σr/σu for hollow tubes (Fy =360 MPa)	106 Fy 107 107

Fig. 4.22: Effect of (b/t) on σu for hollow tubes (Fy =420 MPa)	. 108
Fig. 4.23: Effect of (b/t) on non dimensional critical stress $\sigma L/\sigma y$ for hollow tubes(
=420 MPa)	
Fig. 4.24: Effect of (b/t) on $\sigma r/\sigma u$ for hollow tubes (Fy =420 MPa)	. 109
Fig. 4.25: Effect of (b/t) on σL for filled tubes (Fy = 240 MPa)	
Fig. 4.26: Effect of (b/t) on σu for filled tubes (Fy =240 MPa)	
Fig. 4.27: Effect of (b/t) on non dimensional critical stress $\sigma L/\sigma y$ for filled tubes(F	
=240 MPa)	
Fig. 4.28: Effect of (b/t) on $\sigma r/\sigma u$ for filled tubes (Fy =240 MPa)	
Fig. 4.29: Effect of (b/t) on σ L for filled tubes (Fy = 360 MPa)	
Fig. 4.30: Effect of (b/t) on σu for filled tubes (Fy = 360 MPa)	
Fig. 4.31: Effect of (b/t) on non dimensional critical stress $\sigma L/\sigma y$ for filled tubes (F)	
=360 MPa)	
Fig. 4.32: Effect of (b/t) on $\sigma r/\sigma u$ for filled tubes (Fy =360 MPa)	
Fig. 4.33: Effect of (b/t) on σ L for filled tubes (Fy =420 MPa)	
Fig. 4.34: Effect of (b/t) on σu for filled tubes (Fy =420 MPa)	
Fig. 4.35: Effect of (b/t) on on dimensional critical stress $\sigma L/\sigma y$ for filled tubes (F)	
=420 MPa)	
Fig. 4.36: Effect of (b/t) on $\sigma r/\sigma u$ for filled tubes (Fy =420 MPa)	
Fig. 4.37: Effect of steel yield strength on σL for hollow tubes	
Fig. 4.38: Effect of steel yield strength on σu for hollow tubes	
Fig. 4.39: Effect of steel yield strength on non dimensional critical stress $\sigma L/\sigma y$ for	
hollow tubes	
Fig. 4.40: Effect of steel yield strength on σr/σu for hollow tubes	
Fig. 4.41: Effect of steel yield strength on σL for filled tubes	
Fig. 4.42: Effect of steel yield strength on σu for filled tubes	
Fig. 4.43: Effect of steel yield strength on non dimensional critical stress $\sigma L/\sigma y$ for	
filled tubes	
Fig. 4.44: Effect of steel yield strength on σr/σu for filled tubes	
Fig. 4.45: Effect of concrete infill on σL (Fy =240 MPa)	
Fig. 4.46: Effect of concrete infill on σu (Fy =240 MPa)	
Fig. 4.47: Effect of concrete infill on non dimensional critical stress $\sigma L/\sigma y$ (Fy =2.	
MPa)	
Fig. 4.48: Effect of concrete infill on $\sigma r/\sigma u$ (Fy =240 MPa)	
Fig. 4.49: Effect of concrete infill on σL (Fy =360 MPa)	
Fig. 4.50: Effect of concrete infill on σu (Fy = 360 MPa)	
Fig. 4.51: Effect of concrete infill on non dimensional critical stress $\sigma L/\sigma y$ (Fy =3	60
MPa)	
Fig. 4.52: Effect of concrete infill on $\sigma r/\sigma u$ (Fy =360 MPa)	. 128
Fig. 4.53: Effect of concrete infill on σL (Fy =420 MPa)	. 129
Fig. 4.54: Effect of concrete infill on σu (Fy =420 MPa)	
Fig. 4.55: Effect of concrete infill on non dimensional critical stress $\sigma L/\sigma y$ (Fy =4	
MPa)	
Fig. 4.56: Effect of concrete infill on $\sigma r/\sigma u$ (Fy =420 MPa)	. 130

Abstract

In this thesis, the local and post local buckling of hollow and concrete filled square steel tubes was investigated. An outline of composite columns behavior, past experimental work, and theoretical study on local and post local buckling were presented. The adopted design equations of concrete filled steel tube columns in AISC-LRFD specifications, Eurocode4, and Egyptian code of practice LRFD were also presented.

A finite element model used in the analysis of hollow and concrete filled steel tube columns was conducted using the general purpose finite element program ANSYS. The concrete infill is modeled using three dimensional structural solid elements (solid 65) which capable of cracking and crushing whereas the steel tube is modeled using solid 45. One of the difficulties of modeling the concrete filled steel tube columns in ANSYS is modeling the interface element between concrete and steel surfaces, the element type used and the input coefficient values are discussed. Local buckling takes place when the ability of steel tube to separate from concrete core is achieved. The material model used for concrete accounts for cracking, crushing, and nonlinear behavior. The material model used for steel accounts for yielding. The parameters values used to define concrete and steel material in ANSYS are explained. Solution accuracy and convergence are affected significantly by mesh density so mesh sensitivity analysis using the structural error energy method is performed. The boundary conditions of all models are applied according to the experimental specimens conditions to obtain accurate results. The results obtained from the finite element models are compared with that of experimental tests for verification.

A parametric study conducted to determine the effects of section slenderness ratio b/t ,yield strength of steel tubes, and concrete infill on initial buckling stress σL , post local buckling stress σu , non dimensional critical stress $\sigma L/\sigma y$, and reserve strength σr gained due to the post local buckling occurrence in hollow and filled sections . Eighty four models $% \sigma = 1$ were implemented to study the effects of each independent variable.

The influence of each parameter was studied by varying its value independently within practical limits whereas the other parameters were unchanged. The values of initial buckling stress σL , post local buckling stress σu , non dimensional critical stress $\sigma L/\sigma y$, and reserve strength σr are monitored while varying the independent variables. Stress-lateral deflection and Stress-axial shortening curves are plotted.

Chapter (1)

Introduction

1.1 General

The most popular materials in construction industry are steel and concrete due to their advantageous mechanical properties and behavior. Composite columns utilize the advantages of each material characteristic. A combination of steel and concrete in structural members and components of load bearing structures appears very efficient due to the advantageous properties of both materials that complement each other. It results in the design of highly reliable and cost saving structures. The important characteristics of steel are: high modulus of elasticity, high tensile strength, high ductility, ease in fabrication, high speed of erection, and low weight per square area which result in small size members and long clear spans. Concrete has many advantages such as: high compressive strength, massive stiffness, low cost, and high inherent mass. The main disadvantage of concrete is the low tensile strength.

The composite column is a compression member which commonly used in building construction due to their efficiency in resisting different straining actions with relatively small size and less cost. Composite columns are either composed of concrete encased steel section or concrete filled steel tube section. Composite columns must be designed to resist the most unfavorable load conditions. When the concrete core effect in restraining the local buckling of steel tube is incorporated in the design, steel cost can be minimized. Thin walled composite columns use the concrete restraint effect in delaying the steel tube initial local buckling. Local buckling reduces the strength and stiffness of the concrete filled steel tube columns.

Failure modes of composite columns are divided into two types: 1) material failure, 2) stability failure. Material failure includes concrete crushing and cracking and steel yielding. This mode of failure occurs in short concrete filled steel tube columns composed of compact steel section. Stability failure includes global buckling and local buckling. This mode of failure occurs in long columns and the concrete filled steel tube columns composed of slender steel sections.

1.2 Research Objective

The purpose of this study is to investigate the effect of many parameters on initial buckling stress σ_L , post local buckling stress σ_u , non dimensional critical stress σ_L/σ_v , and reserve strength σ_r gained due to the post local buckling occurrence in hollow and filled sections.

The independent variables considered in the parametric analysis are listed as follows:

- Section type: hollow or filled.
- Steel tube slenderness ratio, b/t ranges from 30 to 160.
- Yield stress of steel tube, F_y (MPa) which has values of 240,360, and 420 MPa.

The analysis procedure adopted in this work may be summarized as follows:

- The coverage of composite columns behavior, past experimental work, and theoretical study on local and post local buckling. The adopted design equations of concrete filled steel tube columns in international codes and specifications were also presented.
- 2. Finite element models building, which can adequately represent the hollow and concrete filled steel tubes different modes of local instability failure.
- 3. Finite element model verification, by comparing its results to mathematical closed form solution and experimental test results.
- 4. Conducting a comprehensive parametric study using the verified finite element model technique used in chapter 3 to illustrate the effects of section slenderness ratio b/t ,yield strength of steel tubes, and concrete infill on local and post local buckling of square hollow and filled steel tubes.

1.3 Thesis Organization and Contents

The thesis includes five chapters, detailed as follows:

- In Chapter one, a brief introduction with the main objectives of the research work and thesis contents are presented.
- In Chapter two, an outline of composite columns behavior, past experimental
 work, and theoretical study on local and post local buckling are presented. The
 adopted design equations of concrete filled steel tube columns in AISC-LRFD
 specifications, Eurocode4, and Egyptian code of practice LRFD are also
 presented.