Brain-type natriuretic peptide for detection and assessment of cardiac dysfunction in children with liver cirrhosis

Thesis

Submitted for Partial Fulfillment of M.D. Degree
In Pediatrics

By

Wafaa Osman Ahmed

M.Sch. (*M.B.B.Ch.*)

Under Supervision of

Prof. Dr. Mortada Hassan Elshabrawy

Professor of Pediatrics

Faculty of Medicine - Cairo University

Prof. Dr. Aya Mohamed Fattouh

Assisstant Professor of Pediatrics

Faculty of Medicine - Cairo University

Prof. Dr. Enas Hamdy Mahmoud

Assisstant Professor of Clinical Patholyy

Faculty of Medicine - Cairo University

Abstract

Background: Cirrhotic cardiomiopathy is described as the presence of cardiac dysfunction in cirrhotic patients. BNP is a cardiac neurohormone released in response to increased ventricular wall tension. The level may be elevated in cirrhotic patients. **The aim of the study:** was to evaluate cardiac dysfunctions in cirrhotic patients and its relationship to BNP plasma level.**subjects and method:** we conducted a cross sectional study on fifty two cirrhotic patients following up at the hepatology clinic in Cairo University Children Hospital and fifty three healthy controls; where they were assessed by conventional echocardiography, Doppler and Tissue Doppler Imaging (TDI) for systolic and diastolic functions &BNP plasma level was measured for both groups using quantitative ELISA technique for BNP supplied by **WKEA MED SUPPLIES CORP.**

Results:We compared the echocardiographic findings of both cases & controls. The cases had significantly increased diameter of the left atrium, right ventricle, pulmonary artery& posterior wall thickness (P value =0.01, 0.02, 0.04&0.04). Using Doppler echocardiography, the E/A of both mitral & tricuspid valves inflow were significantly lower in cases (p value of 0.005 &0.0008) and also A wave velocity of tricuspid valve was significantly higher in cases (p value of 0.001). By using TDI, cirrhotic patients had significantly higher IVRT& lower IVCT of mitral valve inflow (p value of 0.008, 0.03). Patients also had significantly higher Ś wave velocity, É & Tie index & significantly lower IVCT of tricuspid valve inflow (p value of 0.01, 0.0003, 0.01 and 0.02 respectively). Also lower É & higher Ś wave velocity of the septum which was statistically significant in cases as compared to controls (p value of 0.04 & 0.001 respectively).

The BNP levels were significantly higher in cases as compared to controls (p=0.04). But it was of no statistical difference when compared between compensated & decompensated patients. In patients with cirrhosis, the only echocardiographic parameter that was significantly correlated with the BNP level was the E wave velocity on tricuspid valve (p=0.004).

Conclusion: Cirrhotic patients have a degree of cardiac dysfunction. BNP is a useful & specific marker of cardiac dysfunction in cirrhotic patients

Key words: cirrhotic cardiomyopathy, BNP, ECHO, TDI.

Acknowledgment

First and foremost praise and thanks are given to **ALLAH** who provided me, in his unlimited generosity with the medical knowledge, and by his abundant aid this work has been done.

I would like also to express my deep obligation to Prof. Dr. Mortada Hassan Elshabrawy, professor of Pediatrics, Faculty of medicine, Cairo university. For suggesting and planning the subject, supervising the whole work, reading and criticizing the manuscript. I will never forget his unlimited help, continuous support and kind encouragement.

It is a great honor to express my sincere gratitude and deep appreciation to Prof. Dr. Aya Mohamed Fattouh, Professor of Pediatrics, Faculty of medicine, Cairo university. Who gave me the honor of working under her remarkable supervision that makes me really fortunate and who was kind to offer me much of her valuable time.

I would like also to express my sincere gratitude and deep appreciation to Prof. Dr. Enas Hamdy Mahmoud, Lecturer of Pediatrics, Faculty of medicine, Cairo university. Who gave me the honor of working under her supervision, for her careful and great support in this study and in my clinical practice by her wise guidance, valuable and precious experience.

List of abbreviations

AAT	α 1 Antitrypsin deficiency		
AaO2	Alveolar arterial Oxygen		
AMA	Anti mitochondrial antibody		
ANA	Anti nuclear antibody		
AO	Aorta		
ABG	Arterial blood gases		
AIH	Auto immune hepatitis		
BMI	Body mass index		
BSEPP	Bile salt export pump protein		
CB1&2	Cannabinoid 1 and 2		
CM	Carbon monoxide		
CNS	Central nervous system		
CLD	Chronic liver disease		
CPT	Child Pugh Turcotte		
CT	Computed tomography		
CAMP	Cyclic adenosine		
	monophosphate		
CGMP	Cyclic guanosine		
	monophosphate		
DIC	Disseminated intravascular		
	coagulation		
EF	Ejection fraction		
ENOS	Endothelial nitric oxide		
	synthase		
EN	Endothelin-1		
ERS/EASL	European respiratory society/		
	European association for study		
	of liver		
ECM	Extra cellular matrix		
FS	Fractional shortening		

FHVP	Free hepatic vein pressure
FDPS	Fibrin degradation products
FGF	Fibroblast growth factor
FHF	Fulminant hepatic failure
HPCS	Hepatic progenitor cells
HSC	Hepatic stellate cells
HVP	Hepatic vein pressure
HVPG	Hepatic vein pressure gradient
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HDV	Hepatitis D virus
HCC	Hepatocellular carcinoma
HPS	Hepatopulmonary syndrome
HRS	Hepatorenal syndrome
I NOS	Inducible nitric oxide synthase
IMV	Inferior mesenteric vein
IVC	Inferior vena cava
INR	International normalized ratio
IVS	Interventricular septum
IVCT	Isovolumetric contraction time
IVRT	Isovolumetric relaxation time
KC	Kupffer cells
LA	Left atrium
LV	left ventricle
LVPW	Left ventricular posterior wall
LVEDD	Left ventricular end diastolic
	diameter
LVESD	Left ventricular end systolic
	diameter
L MNA	N omega monomethyl L-
	arginine
LPS	Lipopolysaccharides
LBP	Lipopolysaccharide binding
	protein

LT	Liver Transplantation		
MRI	Magnetic Resonance Imaging		
MMPS	Matrix metalloproteinases		
MELD	Model of end stage liver disease		
MDRR3	Multidrug resistant 3 protein		
NEP	Neutral endopeptidase		
nNOS	Neutral endopeptidase Neuronal nitric oxide synthase		
NO	Nitric oxide		
NOS	Nitric oxide synthase		
NAFLD	Non alcoholic fatty liver disease		
NAS	Non alcoholic fatty liver disease		
	activity score		
NASH	Non alcoholic steatohepatitis		
NASH CR	Non alcoholic steatohepatitis		
	clinical research		
OLT	Orthotopic liver transplantation		
PaO2	Arterial partial pressure of		
	Oxygen Pathogon associated molecular		
PAMPS	Pathogen associated molecular		
	patterns		
PRR	Pattern recognition receptors		
PELD	Pediatric end stage liver disease		
PAS	Periodic acid sciff		
PDGF	Platelet derived growth factor		
PBC	Primary biliary cirrhosis		
PSC	Primary sclerosing cholangitis		
PFIC	Progressive familial		
	intrahepatic cholestasis		
PH	Portal hypertension		
PPH	Portopulmonary hypertension		
PV	Portal vein		
PVT	Portal vein thrombosis		
PA	Pulmonary artery		
RFvпа	Recombinant factor vпа		

RAAS	Rennin aldosterone angiotensin		
	system		
RV	Right ventricle		
SMA	Anti smooth muscle antibody		
SVT	Splenic vein thrombosis		
SPB	Spontanous bacterial peritonitis		
SV	Stroke volume		
TV	Tricuspid valve		
TIMP 1&2	Tissue inhibitors of		
	metalloproteinases 1&2		
TLR	Toll like receptors		
TIPS	Trans jugular intrahepatic		
	portosystemic shunt		
TGF b1	Transforming growth factor b1		
TNF α	Tumor necrosis factor α		
VEGF	Vascular endothelial growth		
	factor		
WHVP	Wedge hepatic vein pressure		

INTRODUCTION

Liver cirrhosis is associated with numerous cardiovascular changes and abnormalities, including hyperdynamic circulation, portal hypertension, hepatopulmonary syndrome, and hepatorenal syndrome. The main change of cardiovascular function in cirrhotic patients is the hyperdynamic circulation, as manifested by increased cardiac output and decreased arterial blood pressure (Jeong et al., 2008).

In cirrhotic patients; cardiac output is increased at rest and it has been assumed that systolic function is normal or even supranormal, so many cirrhotic patients present with clinical manifestations that are suggestive of early cardiac dysfunction or overt heart failure (*Baik and Lee*, 2004).

Although this cardiac dysfunction due to hepatic failure has not yet been finally classified and the mechanisms are not fully understood, early detection of this condition is crucial (*Naschitz et al.*, 2000).

Brain-type natriuretic peptide (BNP) is a peptide which has recently been used in the differential diagnosis and follow-up of patients with heart failure. It is a

neurohormone released by the ventricular myocytes and plays a key role in volume homeostasis (*Scardovi*, 2004).

Plasma BNP level is a sensitive indicator of ventricular dysfunction both in symptomatic and asymptomatic patients and its plasma concentration increases with volume and pressure overload in patients with heart failure (*Meune et al.*, 2003).

Several studies have shown increased plasma levels of BNP and Nitrogen terminal fragment of Pro BNP(NT-proBNP) in some patients with cirrhosis, and these findings may suggest cardiac dysfunction (*Henriksen et al.*, 2003).

In addition to the left ventricular (LV) systolic dysfunction, plasma BNP levels have been suggested to be significantly associated with diastolic stage (including newer echocardiographic parameters as tissue Doppler imaging and color M-mode propagation velocity) and right ventricular (RV) functions as well (*Yamaguchi et al.*,2004).

To the best of our knowledge no studies had been done on BNP in cirrhotic children

I ntroduction

Aim of the study:

The present work aims to study the changes of BNP in cirrhotic children and its possible role in early detection of cardiac dysfunction in those patients and correlating it with the echocardiographic evaluation.

Chapter (1): Liver cirrhosis

ANATOMY OF THE LIVER LOBULE

The structural unit of the liver is either the lobule of Kiernan or the acinus of Rappaport. A hepatic lobule of Kiernan consists of a central venule with cords or plates of hepatocytes radiating out toward, several portal tracts, and zonal changes in the lobules are described as being centrilobular, midzonal, or periportal. A hepatic acinus of Rappaport consists of a portal tract as the axis that contains portal veins and hepatic arterioles, with blood flowing through the acinar sinusoids into several terminal hepatic venules, and the changes in the acini are described as being in zones 1, 2, and 3, corresponding to progressive decrease in tissue oxygenation; as shown in Figure 1(*Albers et al.*, 2006).

In the liver there are different types of cells: hepatocytes, which constitute the hepatic parenchyma and represents 70-80% of the total cells, whereas the other 20-30% is formed by endothelial cells, cells of the bile duct, oval cells, Kupffer cells (KC), Pit cells(natural killer lymphocytes) and hepatic stellate cells(Ito or fat-storing cells) (HSC). Hepatocytes occupy 80% of the liver volume, with one or more centrally located round nuclei and are arranged in 1-cell-thick plates (*Alexander et al.*, 2007).