Study of the Effect of Probiotics on Serum IndoxylSulphate in Haemodialysis Patients

Thesis

Submitted For Partial Fulfillment of MD Degree in *Nephrology*

By

Mahmoud Abdallah Mahmoud Amer

M.Scof Nephrology

Under Supervision Of

Professor Dr. Gamal El-Sayed Mady

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Professor Dr. Iman Ibrahim Sarhan

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Professor Dr. Sahar Mahmoud Shawky

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Aber Halim Baki

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Professor Dr. Nayra Shaker Mehanna

Professor of Dairy and Food Microbiology National Research Center

Faculty of Medicine
Ain Shams University
2018

- All praise are to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof Dr. Gamal El-SayedMady,**Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- SarhanProfessor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, who freely gave her time, effort and experience along with continuous guidance throughout this work.
- A lot of thanks are extended to **Prof. Dr. Sahar Mahmoud Shawky,** Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for her effort, constant encouragement and advice whenever needed.
- I also wish to introduce my deep respect and thanks to **Dr. AberHalimBaki**, Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for her great assistance and supervision.
- I would like to express my scincere gratitude to **Prof. Dr. Nayra Shaker Mehanna**, Professor of Dairy and Food Microbiology National Research Center, for supervising this work with great interest and gaving me unlimited support throughout the work.
- I would like to express my thanks for **Dr.Mohammed TawfikFouad**,Researcher in Dairy and Food
 MicrobiologyNational Research Center for his help, support
 and effort during the work.
- Finally, I would like to express my endless thanks to my dear small family, my lovely wife and for her endless support, And never to forget the great efforts of my parents to reach this moment, God blesses you all.

Mahmoud Abdallah Mahmoud Amer

Contents

Subjects	Page
List of Abbreviations	
List of Tables	
List of Figures	
Introduction	
Aim of the Work	
Review of Literature	
Chapter 1:	
Gut Uremic Toxins	6
Chapter 2:	
Probiotics	38
Patients and Methods	56
Results	62
Discussion	90
Summary	100
Conclusion	102
Recommendations	103
References	104
Arabic summary	

<u>Abstract</u>

Chronic kidney disease (CKD) is a worldwide health problem that has many clinical outcomes and affecting the patients due to accumulation of uremic toxins. Many classifications for uremic toxins based on different aspects specially bounding to plasma proteins and molecular size are well known now and affect the mechanism and module of replacement therapy that fit End stage renal disease (ESRD) patients. Indoxyl sulphate (IS) is a protein bound uremic toxin that has many deleterious effects on cardiovascular system with deterioration of kidney functions, It is believed that gut kidney axis has main role for production of IS and so targeting gut microbiota and modifying the dysbiotic content in CKD patients can help in decreasing IS. Probiotics are emerging strategy in clinical life and appear to be effective in targeting IS.

Methodology: Study conducted on 92 ESRD patients on regular HD from January/2017 to March/2017 and patients divided to two groups: intervention group receiving probiotics regimen for 6 weeks while control group receiving placebo for the same period.

Results show reduction of IS (14±22.71 µg/ml vs 3.6±14.33 µg/ml,Pvalue 0.02) in intervention group vs control group respectively,reduction in serum phosphorus,CRP,lipid profile was recorded.

conclusion : Probiotics cause reduction in IS with reduction in phosphorus, CRP, lipid profile with no reported side effects

Key Words:

Chronic kidney disease(ckd),indoxyl sulphate, probiotics, protein bound uremic toxins

List of Abbreviations

AHL : Acetyl homoserine lactone

AHR : Aryl hydrocarbon receptor

cAMP : Adenosine 3',5'-cyclic monophosphate

CKD : Chronic Kidney Disease

COX-2: Cyclooxygenase 2

CREB: camp response element binding protein

CVD : Cardio-Vascular Disease

DCM: Dilated cardiomyopathy

DNA : Deoxyribonucleic acid

ERK1/2: Extracellular Signal-Regulated Kinases 1 and 2

Extracellularly-Regulated Kinase-1 and -2

FAO : Food and Agriculture Organization

FGF23: Fibroblast growth factor 23

FOXP3: Forkhead box p3

GFR : Glomerular filtration rate

GPR : G protein–coupled receptors

GIT : Gastrointestinal tract

GABA: Gamma-aminobutyric acid

GALT: Gut-associated lymphoid tissue

IS : IndoxylSulphate

IBD : Inflammatory bowel disease

List of Abbreviations

IgA : Immunoglobulin A

IBD: Irritable bowel disease

KDIG: Kidney Disease Intiative Global Outcome

 \mathbf{O}

Keap1: Kelch-like ECH protein-1

LVH : Left ventricular hypertrophy

MAPK: Mitogen-activated protein kinase

MAMPs: Microbeassociated molecular patterns

NADPH: Nicotinamide Adenine Dinucleotide Phosphate

Hydrogen

(NF)- : Nuclear factor

к**В** р65

Nox4 : NADPH oxidase-4

Nrf2 : NF erthroid-2-derived factor-2

NOD1: Nucleotide-Binding Oligomerization Domain 1

NF-B: Nuclear Factor- B

OAT : Organic anion transporters

PCS: P-CresylSulphate

PTC: Proximal tubular epithelial cells

PTH : Parathyroid hormone

PBUTs: Protein bound uremic toxins

PWV: Pulse wave velocity

PRR : Pattern recognition receptors

List of Abbreviations

ROS : Reactive oxygen species

RAS : Renin-angiotensin system

RRT : Renal replacement therapy

SULT : Sulphotransferase

SLCO4: A gene on chromosome 5q21.2 that encodes a protein w

C1 hich mediates Na+-independent transport

SCFAs: short-chain fatty acids

TGF: Transforming growth factor

UC : Ulcerative colitis

WHO : World health organization

1,25-D3 : 1,25-dihydroxyvitamin D3

List of Tables

Table	Title	Page
Results		
1	Comparison between intervention group and	62
	control group regarding personal data	
2	Comparison between intervention group and	63
	control group regarding medical history	
3	Comparing Serum Indoxylsulphate level	64
	before and after intervention in both groups	
4	Comparing serum creatinine level before and	66
	after intervention in both groups	
5	Comparing blood urea level before and after	67
	intervention in both groups	
6	Comparing serum uric acid level before and	68
	after intervention in both groups	
7	Comparing serum total calcium level before	69
	and after intervention in both groups	
8	Comparing serum phosphorus level before and	70
	after intervention in both groups	
9	Comparing serum PTH level before and after	71
	intervention in both groups	
10	Comparing hemoglobin level before and after	72
	intervention in both groups	
11	Comparing platlets count before and after	73
	intervention in both groups	

₹List of Tables €

Table	Title	Page
12	Comparing WBCs count before and after	74
	intervention in both groups	
13	Comparing serum iron before and after	75
	intervention in both groups	
14	Comparing TIBC before and after intervention	76
	in both groups	
15	Comparing TSAT before and after intervention	77
	in both groups	
16	Comparing serum ferritin before and after	78
	intervention in both groups	
17	Comparing serum total cholesterol level before	79
	and after intervention in both groups	
18	Comparing serum triglycerides level before	80
	and after intervention in both groups	
19	Comparing serum HDL level before and after	81
	intervention in both groups	
20	Comparing serum LDL level before and after	82
	intervention in both groups	
21	Comparing ESR 1st hour level before and after	83
	intervention in both groups	
22	Comparing ESR 2 nd hour level before and after	84
	intervention in both groups	
23	Comparing CRP level before and after	85
	intervention in both groups	

₹List of Tables €

Table	Title	Page
24	Correlation between change in Indoxyl	86
	sulphate level and change in other lab	
	investigations in intervention group	
25	Correlation between change in Indoxyl	87
	sulphate level and change in other lab	
	investigations in control group	
26	Comparing changes in	88
	IS,PO4,T.cholesterol,TG,LDL and CRP before	
	and after intervention in both groups using	
	repeated measure anova test	
27	Comparing Number of patients that has	89
	gastrointestinal adverse effects reported during	
	the trial	

List of Figures

Fig.	Title	Page
Results		
1	Change in serum Indoxyl sulphate level after	65
	intervention	
2	Comparing Phosphorus (PO4) values in both	70
	groups before and after the intervention.	
3	Comparing Total cholesterol values in both	79
	groups before and after the intervention.	
4	Comparing Triglycerides values in both	80
	groups before and after the intervention.	
5	Comparing LDL values in both groups before	82
	and after the intervention.	
6	Comparing CRP values in both groups before	85
	and after the intervention	

Introduction

In recent years, an appreciation for the role of the gut microbiota in health and disease has gained momentum, with microbial modulating therapies emerging mainstream medicine. Within the discipline of Nephrology, the evidence supporting the role of the kidney-gut axis in uremia is building. In fact, it is now clear that the dysbiotic gut microbiota observed in chronic kidney disease (CKD)produce key nephrovascular toxins, indoxylsulphate (IS) and p-cresol sulphate (PCS). There is convincing evidence demonstrating dose dependent nephro- and cardiovascular toxicities of IS and PCS in both in vitro and animal studies (Vaziri et al., 2013).

Uremic patients show greatly increased counts of both aerobic (approximately 10⁶ bacteria/ml) and anaerobic (approximately10⁷ bacteria/ml) organisms in the duodenum and jejunum, normally not colonized heavily by bacteria in healthy persons. Lower intestinal colonic microbial flora which counts (approximately 10¹²) has also been shown to be altered in patients with CKD (*Vaziri et al.*, 2013).

Hida et al., 1996 studied the colonic composition of microbiota in healthy controls and hemodialysis patients. Analysis of the fecal microbiota revealed a disturbed

composition of the microbiota characterized by an overgrowth of aerobic bacteria. Although this study did not show a significant difference in the total number of bacteria, the number of aerobic bacteria, such as Enterobacteria and Enterococci species, was approximately 100 times higher in hemodialysis patients.

The gastrointestinal system is at the interphase between the blood and the potentially toxic contents of the gut. Histologic changes, including reduction of villous height, elongation of the crypts, and infiltration of lamina propria with inflammatory cells are noted in CKD. Uremia increases intestinal permeability in patients with CKD. The disruption of colonic epithelial tight junction could subsequently lead to translocation ofbacteriaacross the intestinal wall. Hemodialysis induced systemic circulatory stress and recurrent regional ischemia may also damage the mechanical barrier of the gut that promote intestinal dysbiosis contributing to the leaky gut in CKD (Wang et al., 2012).

Certain intestinal bacteria can generate uremic toxins that are absorbed into the blood and are normally cleared by the kidney. Proteinfermentation by gut microbiota results in the generation of different metabolites, including phenols and indoles (*Macfarlane and Macfarlane*, 2012).

Aronov et al., (2011)compare plasma from hemodialysis patients with and without colon and confirmed the colonic origin of indoxyl sulfate and p-cresol. These are prototype members of a large group of protein bound uremic toxins that are resistant to clearance by dialysis.

Barreto et al., (2009) showed that an elevated level of indoxyl sulfate is associated with vascular stiffness, aortic calcification, and higher cardiovascular mortality. Indoxyl sulfate is a potential vascular toxin that induces oxidative stress in endothelial cells, increases shedding of endothelial microparticles, impairs endothelial cell repair mechanism, and increases vascular smooth muscle cell proliferation.

A number of therapeutic opportunities for targetingIS and Pcs have been proposed, including inhibition of colonic bacterial biosynthesis (protein restriction and microbial modulating therapies), suppression of absorption (oral adsorbents), augmentation of clearance (enhanced dialysis) and modulation of cellular pathways (organic anion transporters and antioxidants). Many of these therapies remain limited to experimental studies, have unfavourable

side effects or a high cost burden preventing their translation to clinical research. In particular, oral adsorbents have been extensively studied, with promising improvements in both cardiovascular risk and kidney functionfollowing reductions in serum IS (*Rossi et al.*, 2013).

Probiotics are defined by the United Nations Food and Agriculture Organization and the World Health Organization as live microorganisms which when administered in adequate amounts confer a health benefit on the host. It exerts its effect through

- Acid and bile resistance to ensure survival through the uppergastrointestinal tract.
- Competitive exclusion ofindoxyl sulphate and p-cresol sulphate producing bacteria (through competition for essential nutrients and luminal and epithelial binding sites).
- Direct bacterial antagonism via inhibitory substance production (such as biosurfactants, hydrogen peroxide, and bacteriocins).
- Immunomodulation via immune cell activation resulting in indirectinhibition of pathogenic bacteria (Food and Agriculture Organsization: Guidelines for the evaluation of probiotics in food, 2002).