The Relation Between Neutrophil /Lymphocyte Ratio and Atherosclerotic Coronary Artery Disease Detected by Multislice Computed Tomography in Type Two Diabetic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree of Cardiology

By

Omar Sameh Fahmy Darwish

M.B.B.Ch, Cardiology Resident Misr University for Science and Technology

Under supervision of

Prof. Dr. Ahmed Mohammed Onsy

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Diaa Eldin Ahmed Kamal

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Dr. Ibrahim Abdel Hamid

Lecturer of Cardiology Misr University for Science and Technology

> Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Mohammed Onsy,** Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Diaa Eldin Ahmed Kamal**, Lecturer of Cardiology Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ibrahim Abdel Hamid,** Lecturer of Cardiology Misr University for Science
and Technology, for his great help, active participation and
guidance.

Omar Sameh Fahmy Darwish

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Protocol	
Introduction	1
Aim of the Work	13
Review of Literature	
• Atherosclerosis	14
 Cardiac Computed Tom 	ography33
Patients and Methods	47
Results	54
Discussion	66
Study Limitations	72
Conclusion	73
Summary	74
References	77
Master Sheet	Error! Bookmark not defined.
Arabic Summary	—

List of Tables

Table No.	Title	Page No.
Table (1):	Demographic data of the study popula	tion54
Table (2):	Laboratory data of our study population	on55
Table (3):	MSCT-CA results.	56
Table (4):	Correlation between different variables and ischemic heart disease.	v
Table (5):	Correlation between different variables and severity of ischemic disease.	heart
Table (6):	Correlation between N/L and ABOS, S	

List of Figures

Fig. No.	Title Page N	lo.
Fig. (1).	The endothelial thrombotic balance. ⁵	15
Fig. (1):	Embryologic origin of vascular SMCs. 12	
Fig. (2): Fig. (3):	The structures of normal arteries	
Fig. (4):	Atherosclerotic plaque evolution	
•	Classification of the American Heart	20
Fig. (5):	Association. ⁷⁴	32
Fig. (6):	View within the rotating multidetector CT	
T1 (T)	gantry.	35
Fig. (7):	Computed tomography scans acquisition modes.	37
Fig. (8):	Different reconstruction "kernels." In A, a soft	
8 (= /	kernel. in B The sharp kernel	38
Fig. (9):	Helical CT with dose modulation	
Fig. (10):		
8 \ /	vena cava and right ventricular outflow tract	
	showing relationships of the structures at the	
	base of the heart. B, Axial maximum-intensity	
	projection (MIP) showing the left main and the	
	left anterior descending artery (arrow). C,	
	Midlevel four-chamber view showing the RA,	
	RV, LA, LV and the pericardium (Pc) (arrow).	
	D, MIP showing the distal right coronary	
	artery and the nearby coronary sinus (arrow)	44
Fig. (11):	Three common modes for cardiac CT	45
Fig. (12):	Coronary segments described on cardiac MSCT	45
Fig. (13):	Cardiac chamber axes on cardiac CT	46
Fig. (14):	Multiplaner reformation images showing	
	normal coronaries	56
Fig. (15):	•	
Fig. (16):	Multiplaner reformation image showing	
	moderate LAD lesion.	57

List of Figures

Fig. No.	Title	Page No.
Fig. (17): Fig. (18):	Significant LAD calcified lesion Correlation between different risk	
Fig. (19):	presence of ischemic heart disea study population Correlation between different risk	ses in our 60 factors and
	severity of ischemic heart disease is population.	63
Fig. (20):	Graph showing the relation betwand NLR	0.4
Fig. (21):	Graph showing the relation betwee NLR	0.5
Fig. (22):	Graph showing the relation between NLR	en SSS and

List of Abbreviations

Abb.	Full term
AAA	Abdominal aortic aneurysm
ABOS	Atheroma burden obstructive score
ACS	Acute coronary syndrome
<i>AF</i>	Atrial fibrillation
<i>AGN</i>	Angio-negative
<i>AGP</i>	Angio-positive
	Analysis of variance
ASSH	Ain Shams Specialized Hospital
<i>CABG</i>	Coronary artery bypass grafting
<i>CAC</i>	Coronary artery calcium
CACS	Coronary artery calcium score
<i>CAD</i>	Coronary artery disease
CI	Confidence interval
	Curved multiplanar reformation
<i>CRP</i>	C- reactive protein
CT	Computed tomography
CTDI	Computed tomography dose index
CVD	Cerebrovascular disease
EC	Endothelial cell
ECG	Electrocardiogram
FDA	United States Food and Drug Administration
FOV	Field of view
Hb	Hemoglobin
Hct	Hematocrit
HDL	High density lipoprotein
HR	Hazard ratio
<i>ICAM</i>	Intercellular adhesion molecule
<i>IHD</i>	Ischemic heart disease
kVp	Kilovotage peak
<i>LA</i>	Left atrium

List of Abbreviations Cont...

Full term Abb. LAD.....Left anterior descending artery LCx..... Left circumflex artery LDL.....Low density lipoprotein LDL-C.....Low density lipoprotein cholesterol LMCA Left main coronary artery Lp(a).....Lipoprotein aLVLeft ventricle mA..... Millamperes MACE Major adverse cardiac events MCH Mean corpuscular hemoglobin MCHC...... Mean corpuscular hemoglobin concentration MCP...... Monocytes chemoatractant protein MCV..... Mean corpuscular volume $mGy \bullet cm.....Milligray$ - centimeter MI...... Myocardial infarction MIP Maximum-intensity projection MPR......Multiplanar reformat MSCT......Multisclice computed tomography MUST Misr University for science and technology NLR Neutrophil-to-Lymphocyte Ratio NO......Nitric oxide OM Obtuse marginal PAD..... Peripheral artery disease PAMP...... Pathogen –associated molecular pattern Pc PericardiumPCI......Percutaneous coronary intervention PCSK9 Proprotein convertase inhibitor subtilisin/ kexin type 9 RA.....Right atrium

List of Abbreviations Cont...

Full term Abb. RCA.....Right coronary artery RCT.....Randomized controlled trial RDW......Red blood cell distribution width RV.....Right ventricle S.D..... Standard deviation ScR..... Scavenger receptor SIS Segment involvement score SMC..... Smooth muscle cell SPSS...... Statistical package for social sciences SSS Segment stenosis score Sv.....Sievert SYNTAX SYNergy between PCI with TAXus and cardiac surgery T h.....T helper subtypeT2DM..... Type 2 diabetes mellitus TGF-6..... Transforming growth factor –beta TLC..... Total leucotytic count TLRs Toll-like receptors Treg..... Regulatory T cells VCAM Vascular cell adhesion molecule VR Volume-rendered VTE...... Venous thromboembolism WBC...... White blood cell

Introduction

The term atherosclerosis is derived from the Greek words "Athero" meaning gruel and "Sclerosis" meaning hardening. It is an inflammatory fibroproliferative response to retention of atherogenic lipoproteins in the arterial intima.

It is the most important cause of mortality worldwide. ^{1,2} In USA: CAD accounting for >400,000 deaths annually. About 785,000 Americans have an initial AMI and about 470,000 have a recurrent attack. In Egypt: overall prevalence of CAD is 8.3%. CAD is more in women than in men (8.9% vs. 8%), more in urban than in rural areas (8.2% vs. 7.2%) and age >50 years vs. <50 years (11.1% vs. 5.1%). High prevalence of hypertension in Egypt was the most important risk factor of adverse cardiovascular outcomes. ^{3,4}

Evidence has demonstrated important role ofinflammation in atherosclerosis. The macrophage foam cells are a rich source of proinflammatory mediators and elaborate large quantities of oxidant species. This can promote inflammation in the plaque and progression of the lesion i.e. "innate immunity". There is also an important role of antigen specific or adaptive immunity in plaque progression. Dendritic cells in the lesion can present antigens to the T cells. Antigens include modified or native lipoproteins, heat shock proteins B2, glycoprotein Ib, and infectious agents. Active T cells then secrete large amount of cytokines. The helper T cells have 2

categories, T helper 1 elaborate proinflammatory cytokines and T helper 2 can inhibit inflammation. 5-8

Risk factors for CAD include older age, hypertension, D.M., smoking, obesity, lack of physical activity, mental stress and family history of premature coronary artery disease are also considered risk factors for coronary artery diseases. There are novel risk factors such as high CRP level, lipoprotein (a) and homocysteine.

Diabetic patients who have developed cardiac dysfunction have several molecular signaling pathways that were broken. The disorder of oxidative metabolism increases free fatty acids circulation and lipid metabolism, and this process ends up with lipid accumulation.⁹

Multislice computed tomography coronary angiography (MSCT-CA) is an emerging modality in detection and classification of ischemic heart disease. 10

AIM OF THE WORK

The aim is to investigate the association of neutrophil /lymphocyte ratio (NLR) and atherosclerotic coronary artery disease (CAD) detected by multislice computed tomography (MSCT) coronary angiography in type two diabetic (T2DM) patients.

Chapter 1

ATHEROSCLEROSIS

Structure of the normal artery:

Cell types composing the normal artery:

Endothelial Cells:

The endothelial cell (EC) of the arterial intima constitutes an important contact surface with blood. It plays an important role in vascular homeostasis. This blood compatibility is due to presence of heparan sulfate proteoglycan molecules on the surface of the EC. These molecules can serve as a cofactor for antithrombin III, which inhibit thrombin. The surface of the EC also contains thrombomodulin which activates protein C and S. Also, the EC can produce tissue- and urokinase- type plasminogen activators which activate plasminogen into plasmin. (Fig.1) ECs are originated from a common origin known as blood islands in the embryo's periphery.⁵

Arterial Smooth muscle cells:

Smooth muscle cell (SMC) is the second major cell type of the normal artery. These cells contract and relax thus controlling blood flow through various arterial beds. These cells can migrate and proliferate leading to formation of hyperplastic lesions. Death of these smooth muscle cells causes destabilization of the atheromatous plaques or may lead to ectatic remodeling and aneurysm formation. Unlike ECs, SMCs can arise from many sources. (Fig.2) In the descending aorta, the regional mesoderm serves as the source of smooth muscle precursors. In arteries of the upper body, SMCs are derived from neurectoderm. The coronary artery SMCs arise from the proepicardial organ.¹²

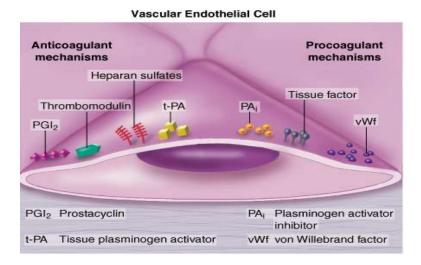


Fig. (1): The endothelial thrombotic balance.⁵

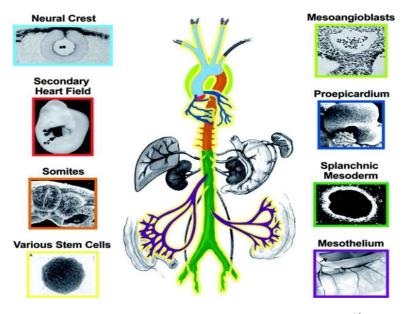


Fig. (2): Embryologic origin of vascular SMCs. 12