EFFECT OF SOME ENVIRONMENTALLY SAFE TREATMENTS ON STORABILITY AND QUALITY APPEARANCE OF EARLY SWEET GRAPES

SubmittedBy

Magda Mahmoud Abd El - Mksoud Kassem

B.Sc. of Agricultural. Sciences, Mansoura University. 1993

M. Sc. Environmental Sciences, Ain Shams University 2010

A Thesis Submitted in Patial Fulfillment

Of

The Requirment for the Doctor of Philosphy Degree

In

Environmental Sciences

Department of Environmental Agricultural Sciences

Institute of Environmental Research and Studies

Ain Shams University

Approval Sheet

EFFECT OF SOME ENVIRONMENTALLY SAFE TREATMENTS ON STORABILITY AND QUALITY APPEARANCE OF EARLY SWEET GRAPES

By

Magda Mahmoud Abd El -Mksoud Kassem

B.Sc., Agric. Sc., Mansoura University.1993

Master in Environmental Sciences, 2010

This thesis for M.D. degree has been approved by:

Prof. Dr. Sahar Mohamed Abd El -Wahab

Prof. of pomology Faculty of Agriculture, Cairo University

Prof. Dr. Nagy yassin Abd ELghfar

Head of Department Plant Pathology, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed Nagy EL-Sayed Tourky

Prof. Emeritus of Fruit Handling, Hort. Res. Inst, Agriculture Research Center

Prof. Dr. Nazmy Abdel - Hamid Abdel - Ghany

Prof of pomology Faculty of Agriculture, Ain Shams University

EFFECT OF SOME ENVIRONMENTALLY SAFE TREATMENTS ON STORABILITY AND QUALITY APPEARANCE OF EARLY SWEET GRAPES

By

Magda Mahmoud Abd El -Mksoud Kassem

B.Sc., Agric. Sc., Mansoura University.1993 Master in Environmental Sciences, 2010

Under the supervision of:

Prof. Dr. Nazmy Abdel-Hamid Abdel-Ghany

Prof of Pomology, Dean of the Faculty of Agriculture, Ain Shams University

Prof. Dr. Medhat Kamel Aly

Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed Nagy EL-Sayed Tourky

Prof. Emeritus of Fruit Handling, Hort. Res. Inst, Agriculture Research Center

ACKNOWLEDGMENT

First, I would like to express my deepest thanks to *Allah*. Who gave me the patience, power, knowledge and helping me to carry out and finish this work

I am very grateful and deeply indebted to *Prof. Dr Nazmy Abdel – Hamid Abdel – Ghany* professor of Pomology. Faculty of Agriculture, Ain Shams University, for his generous advice, constant guidance, encouragement, great help throughout this work.

I am deeply grateful *Prof. Dr .Medhat Kamel Aly* Assistant Prof of Plant Pathology, Department of Plant Pathology. Faculty of Agriculture, Ain Shams University, for his kindly offered all the facilities for the requirements of this work.

I wish to express my deep gratitude to *Prof. Dr .Mohamed Nagy EL-Sayed Tourky* professor of Fruit Handling, Hort. Res. Inst. Agriculture Research Center, for his continuous sincere guidance, encouragement, enthusiastic supervision and support well appreciated.

I am deeply indebted to *Dr. Samah Nasr* Researcher of Pomology at the Higher Institute for Agriculture Co - Operation, Shubra Al Khaimah, Cairo, Egypt for her remarkable effort, kind support and great help throughout this thesis.

I would also like to send my deepest love and gratitude to my husband *Mohamed Abd Elrahman* and also for my two sisters *Manar* and *Amena* for everything they do for me

I would also like to think, my colleagues and friends who had patience to help me in whatever way they could.

ABSTRACT

The effect of two environmentally safe postharvest covered with potassium silicate (PS) and Gum Arabic (GA) with three wrapped materials, heat shrink film (SH), perforated polyethylene (PPE) bags 40 mu and perforated polyethylene (PPE) bags 80 mu on Early sweet grape and stored during 28 days at 0°C or 7°C, relative humidity (90 - 95 %) and after then in marketing temperature in 2013 and 2014 seasons, data reveal that, clusters grapes were dipped in potassium silicate (PS) or in Gum Arabic (GA) and wrapped with heat shrink film (SH) were had the lowest significant percentages of fruit weight loss, decay, shatter and total lose berries percentages these due to increasing in bunch freshness. Average berry firmness and adherence strength decreased as the storage period increased reaching its lowest values at the end of storage in both storage degrees in two seasons, potassium silicate and Gum Arabic with heat shrink reflected the highest berry firmness and adherence strength in this respect during the different periods of storage in two seasons of study. The highest percentages were suggested on weight loss, decay, shatter and discarded berries when clusters dipped in Gum Arabic and wrapped by perforated polyethylene (PPE) bags 80 mu, it was worse than untreated treatment (control) and that due to unacceptable clusters in marketing

All privies physical properties were discussed in marketing temperature at (25°C) and found the same liner.

When tested effect of treatments on chemical properties such as T.S.S, acidity, TSS / acid ratio found that gradually increased and acidity decreased with extend of storage period during two seasons. On the end of storage days, the untreated clusters and treated clusters with potassium silicate and Gum Arabic plus profited polyethylene 40 and 80 mu give the lowest values of T.S.S without significant different between them. Total acidity in berry juice tended to fluctuate, but some increment was found as a storage period prolonged till 28 days of two cold storage studded (0°C or 7°C). Thus, all treatments produced a lower acidity in berry juice compared with the control after 28 days of cold storage.

Gum Arabic with profited polyethylene in 80 mu (GA + PPE 80 mu) treatment gave the lowest values in T.S.S /acid ratio followed by Gum Arabic with profited polyethylene in 40 mu (GA + PPE 40 mu), potassium silicate with profited

polyethylene in 40 mu (PS + PPE 40 mu) and potassium silicate with profited polyethylene 80 mu (PS + PPE 80 mu), potassium silicate with heat shrink (PS + SH) to reach the highest value to Gum Arabic with heat shrink (GA + SH) as compared with the control treatment.

Dipping clusters in Gum Arabic (GA) or potassium silicate (PS) and wrapped by shrink film (SH) tend to have the effective role in reducing the rate of respiration of grape clusters. The same liner were found when tested effect of treatment on marketing period after cold storage.

It can conclusion that the best treatment record for dipping clusters in potassium silicate and wrapped by heat shrink film

Key words: Early sweet grapes, Gum Arabic, Potassium silicate, Modified atmosphere packing (MAP), Heat shrinkable, Cold storage.

CONTENTS

1	Introduction	1
2	REVIEW OF LITERATURE	5
2.1	Effect of modified atmosphere packaging in physical and chemical	8
	of grapes and other fruits under cold storage and market life	
2.2	Effect of heat shrink film in physical and chemical properties of	17
	grapes and other fruits under cold storage and market life	
2.3	Effect of Gum Arabic in physical and chemical properties of grapes	19
	and other fruits under cold storage and market life	
2.4	Effect of potassium silicate on physical and chemical properties of	23
	grapes and other fruits under cold storage and market life	
3	MATERIALS AND METHODS	25
3.1	Plant material and experimental design	25
3.2	Methods	26
3.3	Measurements at harvest	27
3.3.1	Physical analyses	27
3.3.2	Chemical analyses	27
3.4	Measurements during cold storage in refrigerator (every week)	28
3.4.1	Weight Loss Percentage	28
3.4.2	Berry Decay Percentage	28
3.4.3	Berry Shatter Percentage	28
3.4.4	Total Loss Percentage	28
3.4.5	Bunch freshness	29
3.4.6	Respiration Rate (mg Co ₂ / kg fruit/hr)	29
3.5	Statistical analysis	29
4	RESULTS AND DISCUSSION	30
4.1	Effect of different postharvest treatments on physical properties of	30
	Early sweet grapes under cold storage	
4.1.1	Weight loss Percentage	30
4.1.2	Berry Decay Percentage	32
4.1.3	Berry Shatter Percentage	34
4.1.4	Total Loss Percentage	36

4.1.5	Bunch Freshness	37
4.1.6	Berry Firmness (g/cm ²)	40
4.1.7	Berry Adherence Strength (g / cm ³)	42
4.2	Effect of different treatments on chemical properties of Early sweet	43
	grapes under cold storage	
4.2.1	Total Soluble Solids Percentage (TSS %)	43
4.2.2	Total Acidity Percentage	45
4.2.3	Total Soluble Solids / Acid ratio	47
4.2.4	Respiration Rate (gm CO ₂ /kg/h)	48
4.3	Effect of different postharvest treatments on Early sweet grapes at	50
	market temperature for 7 days after cold storage	
4.3.1	Effect of different postharvest treatments of physical properties on	50
	Early sweet grapes at market temperature for 7 days after cold	
	storage	
4.3.2	Effect of different postharvest treatments of chemical properties on	52
	Early sweet grapes at market temperature for 7 days after cold	
	storage	
5	SUMMARY AND CONCLUION	54
6	REFERENCES	60
7	Appendix	77
8	ARABIC SUMMARY	

LIST OF TABLES

1	Bunch freshness	29
2	Effect of different postharvest treatments on weight loss percentage	31
	of Early sweet grapes under cold storage during 2013 season.	
3	Effect of different postharvest treatments on weight loss percentage	31
	of Early sweet grapes under cold storage during 2014 season.	
4	Effect of different postharvest treatments on decay percentage of	33
	Early sweet grapes under cold storage during 2013 season.	
5	Effect of different postharvest treatments on decay percentage of	34
	Early sweet grapes under cold storage during 2014 season.	
6	Effect of different postharvest treatments on shatter percentage of	35
	Early sweet grapes under cold storage during 2013 season.	
7	Effect of different postharvest treatments on shatter percentage of	35
	Early sweet grapes under cold storage during 2014 season.	
8	Effect of different postharvest treatments on discarded berries	36
	percentage of Early sweet grapes under cold storage during 2013	
	season	
9	Effect of different postharvest treatments on discarded berries	37
	percentage of Early sweet grapes under cold storage during 2014	
	season	
10	Effect of different postharvest treatments on bunch freshness of Early	39
	sweet grapes under cold storage during 2013 season.	
11	Effect of different postharvest treatments on bunch freshness of Early	39
	sweet grapes under cold storage during 2014 season.	
12	Effect of different postharvest treatments on berry firmness of Early	41
	sweet grapes under cold storage during 2013 season.	
13	Effect of different postharvest treatments on berry firmness of Early	41
	sweet grapes under cold storage during 2014 season.	
14	Effect of different postharvest treatments on berry adherence strength	42
	of Early sweet grapes under cold storage during 2013 season.	

15	Effect of different postharvest treatments on berry adherence strength	43
	of Early sweet grapes under cold storage during 2014 season.	
16	Effect of different postharvest treatments on total soluble solids	44
	percentage of Early sweet grapes under cold storage during 2013	
	season.	
17	Effect of different postharvest treatments on total soluble solids	45
	percentage of Early sweet grapes under cold storage during 2014	
	season.	
18	Effect of different postharvest treatments on total acidity percentage	46
	of Early sweet grapes under cold storage during 2013 season.	
19	Effect of different postharvest treatments on total acidity percentage	46
	of Early sweet grapes under cold storage during 2014 season.	
20	Effect of different postharvest treatments on T.S.S / Acid ratio of	47
	Early sweet grapes under cold storage during 2013 season.	
21	Effect of different postharvest treatments on T.S.S / Acid ratio of	48
	Early sweet grapes under cold storage during 2014 season.	
22	Effect of different postharvest treatments on respiration rate of Early	49
	sweet grapes under cold storage during 2013 season	
23	Effect of different postharvest treatments on respiration rate of Early	50
	sweet grapes under cold storage during 2014 season	
24	Effect of different postharvest treatments on physical properties of	51
	Early sweet grapes at market temperature for 7 days after cold storage	
	during 2013 season	
25	Effect of different postharvest treatments on physical properties of	52
	Early sweet grapes at market temperature for 7 days after cold storage	
	during 2014 season	
26	Effect of different postharvest treatments on chemical properties of	53
	Early sweet grapes at market temperature for 7 days after cold storage	
	during 2014 season.	
27	Effect of different postharvest treatments on chemical properties of	53
	Early sweet grapes at market temperature for 7 days after cold storage	
	during 2014 season.	

List of Appendix

1	Effect of different postharvest treatments on weight loss percentage	77
	of Early sweet grapes under cold storage during 2013 season.	
2	Effect of different postharvest treatments on weight loss percentage	77
	of Early sweet grapes under cold storage during 2014 season.	
3	Effect of different postharvest treatments on berry decay percentage	78
	of Early sweet grapes under cold storage during 2013 season.	
4	Effect of different postharvest treatments on berry decay percentage	78
	of Early sweet grapes under cold storage during 2014 season.	
5	Effect of different postharvest treatments on berry shatter percentage	79
	of Early sweet grapes under cold storage during 2013 season	
6	Effect of different postharvest treatments on shatter percentage of	79
	Early sweet grapes under cold storage during 2014 season.	
7	Effect of different postharvest treatments on total loss percentage of	80
	Early sweet grapes under cold storage during 2013 season.	
8	Effect of different postharvest treatments on total loss percentage of	80
	Early sweet grapes under cold storage during 2014 season.	
9	Effect of different postharvest treatments on bunch freshness of Early	81
	sweet grapes on cold storage during 2013 season.	
10	Effect of different postharvest treatments on bunch freshness of Early	81
	sweet grapes under cold storage during 2014 season.	
11	Effect of different postharvest treatments on berry firmness (g/cm²) of	82
	Early sweet grapes under cold storage during 2013 season.	
12	Effect of different postharvest treatments on berry firmness (g/cm²) of	82
	Early sweet grapes under cold storage during 2014 season.	
13	Effect of different postharvest treatments on berry adherence strength	83
	(gf) of Early sweet grapes under cold storage during 2013 season.	
14	Effect of different postharvest treatments on berry adherence strength	83
	(gf) of Early sweet grapes under cold storage during 2014 season.	

15	Effect of different postharvest treatments on total soluble solids	84
	percentage (T.S.S %) of Early sweet grapes under cold storage during	
	2013 season.	
16	Effect of different postharvest treatments on total soluble solids	84
	percentage (T.S.S %) of Early sweet grapes under cold storage during	
	2014 season.	
17	Effect of different postharvest treatments on total acidity percentage	85
	of Early sweet grapes under cold storage during 2013 season.	
18	Effect of different postharvest treatments on total acidity percentage	85
	of Early sweet grapes under cold storage during 2014 season.	
19	Effect of different postharvest treatments on T.S.S / Acid ratio of	86
	Early sweet grapes under cold storage during 2013 season.	
20	Effect of different postharvest treatments on T.S.S / Acid ratio of	86
	Early sweet grapes under cold storage during 2014 season.	
21	Effect of different postharvest treatments in respiration rate (gm CO ₂	87
	/kg/h) of Early sweet grapes under cold storage during 2013 season.	
22	Effect of different postharvest treatments in respiration rate (gm CO ₂	87
	/kg/h) of Early sweet grapes under cold storage during 2014 season.	

INTRODUCTION

1- INTRODUCTION

Table grapes are one of the most widely grown fruit crops in Egypt. It's considered to be the second most important fruit crop after citrus. Table grapes are grown from Alexandria in the north of Egypt to Aswan in the south. There are many varieties of table grapes produced in Egypt, like Early sweet, Superior, Thompson seedless, Flame seedless, Crimson, and Red globe. Competition among Egyptian growers is tough. There's always more competition every year because of the new grape plantations coming into production every year, so the only thing that keeps one ahead of others in the market is the ability of producing high quality grapes. Egyptian's geographical spread of production enables fresh sweet grapes to be available From May to July for the main export destinations such as the European Union (UK, Netherlands, Italy ...), Russia, and Gulf region (Emirates). Grapes can be picked, packed and air freighted to markets within 60-72 hours of harvest. Shipping to the Middle East countries takes almost 48-60 hours. Egypt exports around 7% from the total volume of produced grape. In 2013, the total volume of the exported grape was around 80,000 tones AGQ (2014).

Storage methods used to protect freshness of grapes are chemical protect, controlled atmosphere storage and cold storage. Cooling is the most active method to control maturity of vegetables and fruits in practice. Maturity of vegetables and fruits are the decaying caused by changing of chemical changing in organic matters. Enzymes can cause chemical changing in organic matters. Chemical reaction is too slow at below 0°C Selcuk and Serap (2004). Storage affected the change of different parameters in different way as well as the change of the quality of evaluated samples. Sensory traits like taste scent and texture decreased during storage. The storage reduced also the quality measured physical parameters fixing ability of grape berries and firmness of grape skin Minarovska and Horcin (2000). However, despite good temperature control during postharvest storage, table grapes continue to lose mass mainly due to the micro-climatic conditions that were created within the enclosed fruit packages.

Ngcobo *et al.* (2012) reported that there were significant differences in mass loss of table grapes packed in different multi packages, where the perforated liners films resulted in a higher mass loss than the non-perforated liner films during cold storage period.

The table grape is not exempt from issues of degrading quality, and many problems have been detected during postharvest storage and shelf life. Quality losses include weight loss, color change, berry softening and rachis browning, leading to reduced shelf life and overall quality **Valverde** *et al.* (2005).

Packaging and handling systems have been developed in many countries to move products from farm to consumer expeditiously in order to minimize quality degradation. Procedures include lowering temperature to slow respiration and senescence, maintaining optimal relative humidity to reduce water loss without accelerating decay, adding chemical preservatives to reduce physiological and microbial losses, and maintaining an optimal gaseous environment to slow respiration and senescence Wills et al. (1989); Workneh et al. (2011). It is widely accepted that modified atmosphere packaging (MAP) helps to retard tissue senescence and consequently extends storage life of produces Lurie et al. (2007). However, reliable knowledge about the practical use of MAP on the quality of minimally processed grapes is still limited. Kader (2002) recommended the use of MAP as a supplement to avoid skin browning incident which is a significant problem occurring in storage of perishable produces like grapes.

In the absence of cold storage, deterioration is often faster because of the production of vital heat and carbon dioxide release from respiration. Thus, cold storage is mainly used to decrease the respiratory rate, reducing losses, and retaining the product features that are associated with quality. Modified atmosphere packing (MAP) leads to a reduction in the fruit respiration rate depending on the levels of fruit respiration and the film permeability, there may be an increase in the CO₂ levels that leads to anaerobic respiration, ethanol accumulation and physiological injuries to the product **Artes** *et al.* (2007).

Recently dipping in solutions of natural compounds in combination with modified atmosphere packaging (MAP) was proven as promising means for postharvest control decay **Valero** *et al.* (2006). The principal advantage of shrink wrapping are: reduced weight loss, minimized fruit deformation reduced chilling injury and reduced decay by preventing secondary infection.