Knowledge, Attitude and Practice of Radiology Technicians in Ain-Shams University Hospitals regarding Ionizing Radiation Health Hazards

Thesis Submitted for partial fulfillment of master degree in Occupational medicine

<u>BY :</u> Dena Ali Mahmoud Abozaid

M.B., B. Ch.
Ain Shams University

Supervised by:

Professor Ahmed Esmat Shouman

Department of Community, Environmental and Occupational Medicine

Ass. Prof. Sally Adel Hakim

Department of Community, Environmental and Occupational Medicine

Dr. Mohamed Abdel Magid Tolba Mo'men

Department of Community, Environmental and Occupational Medicine

Faculty of medicine - Ain Shams University

2016

ACKNOWLEDGEMENT

First of all thanks to Allah for giving me the power and strength to complete this work.

I would like to express my special appreciation and thanks to my supervisors Professor Ahmed Esmat Shouman, Ass. Prof. Sally Adel Hakim and Dr. Mohamed Abdel Magid Tolba Mo'men for all the help and encouragement they have given me.

I'd like to thank Prof. Randa Abd- Allah in Radiodiagnosis & Interventional Radiology Department for her kind guidance in the construction of the study questionnaire. And I'd like to show my deepest gratitude to all the radiation technicians who agreed to participate in this study.

Last but not least I'd like to thank all my family members words cannot express how grateful I am for all the love and support you have given me. There's no way I could make it without you.

CONTENTS

LIST OF ABBREVIATIONS	. 1
LIST OF TABLES	/v
TABLE OF LITERATURE REVIEW	/v
TABLES OF RESULTS	/v
ABSTRACT	1
Introduction	3
GOAL & OBJECTIVES	8
REVIEW OF LITERATURE	9
CHAPTER 1 RADIATION OVERVIEW	9
CHAPTER 2 IONIZING RADIATION HEALTH HAZARDS2	2
CHAPTER 3 OCCUPATIONAL EXPOSURE TO IONIZING RADIATION IN HOSPITALS	6
Participants and Methods	0
RESULTS	1
DISCUSSION 12	1
CONCLUSION 14	7
LIMITATIONS 14	9
RECOMMENDATIONS15	0
SUMMARY	2

REFERENCES	
ANNEX I	169
ANNEX II	
الملخص العربي	••••••

LIST OF ABBREVIATIONS

&	And
AAED	Annual Average Effective Dose
ABCC	Atomic Bomb Casualty Commission
AIP	American Institute of Physics
ALARA	As Low As Reasonably Achievable
	Agency for Toxic Substances and Disease
ATSDR	Registry
BEIR	Biological Effects of Ionizing Radiation
Bq	Becquerel
CAs	Chromosome Aberration
	Canadian Center For Occupational Health
CCOHS	And Safety
CDC	Center Of Disease Control
CI	Confidence Interval
Ci	Curie
CNSC	Canadian Nuclear Safety Commission
Cm	Centimeter
CT	Computerized topography scan
DNA	Deoxyribonucleic Acid
DTPA	Diethylenetriamine Penta-acetate
DR	Dose Response
EAEA	Egyptian Atomic Energy Authority
e.g.	Example
eV	Electronvolts
F	ANOVA (Analysis of variance) test
FAO	Food & Agriculture Organization
GBq	Giga Becquerel
GI	Gastrointestinal
GM	Geiger Mueller
Gy	Gray
I-131	Iodine-131
IAEA	International atomic energy agency

	International Commission On Radiological
ICRP	Protection
ILO	International Labour Organization
IR	Infrared
KBq	Kilo Becquerel
KI	Potassium Iodide
LD50	50% Lethal Dose
LD50 / 60	50% Lethal Dose In 60 Days.
Li F	Lithium Florid
LNT	Linear Non Threshold
LSS	Life Span Study
MBq	Mega Becquerel
MCH	Mean Corpuscular Hemoglobin
MCHC	Mean Corpuscular Hemoglobin Concentration
MeV	Mega Electronvolts
Mm	Millimeter
MOHP	The Ministry Of Health And Population
MRI	Magnetic Resonance Imaging
mSv	Millisievert
MW	Microwaves
NA	Not Applicable
NAS	National Academy Of Sciences
NCEH	National Center for Environmental Health
	National Center for Injury Prevention and
NCIPC	Control
No.	Number
Obs. & Gyna.	Obstetrics & gynecology
OR	Operation Room
ORP	Occupational Radiation Protection
OSHA	Occupational Safety Health Administration
	Optically Stimulated Luminescence
OSLDs	Dosimeters
PET scan	Positron emission topography scan
PME	Periodic Medical Examination
PNRA	Pakistan Nuclear Regulatory Authority

PPD	Personal protective device
PPE	Personal Protective Equipment
R	Roentgen
(r)	Pearson correlation co-efficient
Rad	Radiation absorbed dose
RERF	Radiation Effects Research Foundation
RF	Radiofrequency
RPII	Radiological Protection Institute of Ireland
SIT	The Sterile Insect Technique
SPECT	Single Photon Emission Computed
	Tomography
Sv	Sievert
TLDs	Thermoluminscent Dosimeters
t test	Student t test
UN	United Nations
	UN Scientific Committee On The Effects Of
UNSCEAR	Atomic Radiation
	United States Environmental Protection
US EPA	Agency
	United States Nuclear Regulatory
US NRC	Commission
UV	Ultraviolet
WHO	World Health Organization
WNA	World Nuclear Association
χ2	Chi-square test

LIST OF TABLES

Table No.	Title	Page No.
Table of literature Review		
Table (1):	Tissue Weighting Factors for Individual Tissues and Organs:	20
	Tables of Results	
Table (1-1):	Descriptive data of technicians according to their Sociodemographic and workplace (Distribution & Mean ± SD)	81
Table (1-2):	Descriptive data of technicians according to their Occupational Background (Distribution & Mean ± SD)	83
Table (2-1):	Distribution of Technicians according to their Knowledge of different Health Hazards caused by Radiation Exposure	85
Table (2-2):	Distribution of technicians according to their knowledge of different Radiation Safety Measures	86
Table (2-3):	Distribution of Technicians According to knowledge of which Radiological Machine emits the highest dose of Radiation while operating	87
Table (2-4):	Radiation Knowledge Score: Technicians' Knowledge regarding Radiation Health Hazards & Radiation Safety Measures:	88
Table (2-5):	Distribution of technicians according to their knowledge of Radiation Health Hazards & Radiation Safety Measures questions	89
Table (3-1):	Distribution of technicians according to their Radiation Safety Attitudes	90

Table (3-2):	Distribution of technicians according to their Work Place Safety Assessment & their Suggestions to improve Workplace Radiation safety	92
Table (3-3):	Radiation Safety Attitude Score	93
Table (4-1):	Distribution of technicians according to their radiation safety practices	94
Table (4-2):	Radiation Safety Practice Score	96
Table (4-3):	Distribution of technicians according to frequency of Performing Periodic Medical Examination & monitoring of dosimeters "as reported by the technicians":	97
Table (4-4):	Distribution of technicians according to the causes of Non-Compliance with Radiation Safety Practice Measures:	99
Table (5-1):	Distribution of Technicians According to their Awareness of Radiation safety measures conducted in the Departments:	101
Table (6-1):	Factors Affecting Radiation Knowledge Score	103
Table (6-2)	Factors Affecting Radiation Safety Attitude Score	105
Table (6-3):	Factors Affecting Technicians' usage of Leaded Apron	107
Table (6-4):	Factors Affecting Technicians' usage of Dosimeters	109
Table (6-5):	Factors Affecting Technicians' Performance of Periodic Medical Examination	111
Table (6-6):	Association between Using Technicians' Radiation Safety Practices & Technicians' Radiation Safety Attitudes	113
Table (6-7)	Correlation between radiation knowledge score and radiation safety practice score:	114

Table (6-8):	Correlation between Radiation Knowledge	115
	Score and Radiation Safety Attitude Score:	
Table (6-9):	Correlation between Radiation Safety	115
	Attitude Score and Radiation Safety	
	Practice Score:	
Table (7-1):	Description of observed Radiology units	116
	according to Departments and Hospitals:	
Table (7-2):	Distribution of Observed radiology units	117
	according to Department's Radiation Safety	
	Measures:	
Table (7-3):	Distribution of Observed Radiology units	119
	according technicians' use Radiation Safety	
	Practice:	

ABSTRACT

Radiation exposure in hospitals account for the largest number of workers occupationally exposed to radiation.

The study aim was to measure the knowledge, attitude and practice of radiology technicians regarding radiation health hazards and radiation safety measures. The study included 61 radiology technicians working in Ain-Shams university Hospitals. An interview Arabic questionnaire and an observational checklist was used to collect the data.

Result of this study showed that 23 (37.7%) technicians scored less than 50% in the radiation knowledge score and 55 (90.2%) technicians scored 50% or more in radiation safety attitude score. However a defect in adopting radiation safety practices was found as 56 (91.8) technicians scored less than 50% in radiation safety practice score. There was a statistically significant association between technicians' usage of leaded aprons and technicians' age and duration of experience in radiology. A statistically significant association was found between using dosimeters and gender and attending radiation safety courses. A statistically significant association between gender and performing periodic medical examination was found. And between the hospitals were technicians worked and performing periodic medical examination.

It was also found from the observational checklist that all observed radiology units hospitals had radiation warning signs posted. However it was observed that none of the radiology units had a label for the last machine maintainace nor had any radiation safety manual available and none of the radiology units had an emergency protocol posted.

It is recommended to provide radiation safety course and revise the content of already available courses.

Keywords: Radiation safety, knowledge, Attitude, Practice, Radiation health hazards

Introduction

Wilhelm C. Roentgen discovered X-rays on 8 November 1895 and since then X-rays has been used in different areas of everyday life, such as medicine, agriculture, geology, mining, industry, scientific applications and Nuclear power (*Szarmach et al, 2015*).

Radiation exposure can cause severe health hazards. The extent and severity of these health hazards differ according to the radiation dose, dose rate; whether acute or chronic exposure rate and surface of the exposed body part; whether localized or generalized radiation exposure (*CDC*, 2015).

Awareness of ionizing radiation health hazards began early in 1902 as skin cancer occurrence in radiologists raised questions about radiologists' safety and health hazards due to radiation exposure (*Frieben*, 1902). In 1940, it was noticed that there are increase in mortality rates due to leukemia among radiologists (*Henshaw & Hawkins*, 1944), (*Ulrich*, 1946) and (*Lewis*, 1957)

A study in 1958, to investigate mortality rates among British health care workers found that, there was an increase in deaths due to cancer among radiologists who practiced before1921 (as 1921 is the year when it was first advised to adopt radiation protection and a committee was established) (*Court Brown & Doll*, 1956).

In 1956, the United States National Academy stated in its report that American radiologists' average age of death is five years less than non-radiologists physicians (*National Academy of Sciences*, 1956).

Radiation is used in medicine for diagnostic and therapeutic purposes; radiation is used in diagnostic techniques as X- rays, CT scan, single photon emission computed tomography (SPECT)" diagnostic techniques use radioisotope" and also in positron emission tomography (PET). Radiation is used in Nuclear Medicine, interventional radiology and Radiotherapy in Oncology as well (*United States nuclear regulatory commission US NRC*, 2014).

Radiation protection is mandatory; especially with the growing widespread use of radiation in different medical procedures. Radiation exposure in hospitals accounts for the largest number of workers occupationally exposed to radiation (*Holmberg et al, 2010*).

Sometimes when radiology technicians are busy in performing procedures they may neglect that radiation can cause health hazards and forget the radiation safety practices especially that radiation is invisible and odorless; they forget to use radiation protection equipment resulting in exposing themselves to unnecessarily higher levels of radiation. One of the fundamental

reasons of excessive radiation exposure is the fact that many of the healthcare workers involved with radiation have received only basic radiation training and their knowledge about radiation safety measures may be insufficient (*Kiah and Stueve*, 2012).

According to Egyptian labor law of Occupational Safety and Health and work environment security, sections 216,217 and 218, Workers have a right to a safe workplace and to know about all potential hazards in the workplace and to know how to protect themselves (*Egyptian Labour Law, 2016*), workers have the right to know what hazards are present in the workplace, its effect on their health and how to protect themselves.

Awareness of workers occupationally exposed to ionizing radiation regarding radiation induced health hazards and radiation safety guidelines is important, previous studies shows that there was lack of radiation safety knowledge among radiation exposed workers in hospitals (*Kiah and Stueve*, 2012).

A study was conducted in Oxford and South Wales specialized hospitals and 130 physicians and radiologists were included. None of the participants knew the unit of measurement of radiation, 97% of the participants under-estimated the actual dose in each of radiological investigations. Moreover some physicians thought that ultrasound and magnetic resonance imaging (MRI) investigation uses ionizing radiation (5% and 8% respectively) (*Shiralkar et al, 2003*).