

Management plan for enhancing Bardawil Lagoon productivity using Remote Sensing and Geographic Information System

A Thesis submitted for the award of the Degree of Doctor Philosophy in Science (Ph.D.) in Zoology (Aquatic Ecology)

By

Wiame Waheed Mahmoude Emam

Master in Aquatic Ecology (2011)

Under Supervision of

Prof. Magdy T. Khalil

Prof. of Aquatic Ecology, Zoology Dept., Faculty of Science, Ain Shams University.

Prof. Abd El-Halim A. Saad

Prof. of Aquatic Ecology, Zoology Dept., Faculty of Science, Ain Shams University.

Prof. Mahmoud H. Ahmed

Prof. of Oceanography & Coastal Studies, Marine Sciences Dept., National Authority for Remote Sensing & Space Sciences [NARSS].

Dr. Sameh B. El-Kafrawy

Researcher in Marine Science, Marine Sciences
Dept., National Authority for Remote Sensing &
Space Sciences [NARSS].

Zoology Department Faculty of Science Ain Shams University

(2016)

Zoology Department Faculty of Science Ain Shams University

Approval Sheet

Title of Thesis:

Management plan for enhancing Bardawil Lagoon productivity using Remote Sensing and Geographic Information System

Candidate Name: Wiame Waheed Mahmoude Emam

Supervisors

Signature

Prof. Magdy T. Khalil

Prof. of Aquatic Ecology, Zoology Dept., Faculty of Science, Ain Shams University.

Prof. Abd El-Halim A. Saad

Prof. of Aquatic Ecology, Zoology Dept., Faculty of Science, Ain Shams University.

Prof. Mahmoud H. Ahmed

Prof. of Oceanography & Coastal Studies, Marine Sciences Dept., National Authority for Remote Sensing & Space Sciences [NARSS].

Dr. Sameh B. El-Kafrawy

Researcher in Marine Science, Marine Sciences Dept., National Authority for Remote Sensing & Space Sciences [NARSS].

Acknowledgements

Praise and thanks to **Allah** without whose help, I would not have been able to complete this work.

My deepest gratitude and sincere appreciation goes to **Prof. Dr. Magdy Tawfik Khalil,** Professor of Aquatic Ecology, Faculty of Science, Ain Shams

University, not only for planning the point of research and keen supervision, but also for his guidance and continuous encouragement.

I wish to express my sincere gratitude and deep thanks to **Prof. Dr. Abd El-Halim Abdo Saad,** Professor of Invertebrates, Faculty of Science, Ain Shams University, for his supervision and help. He tided me over many difficulties throughout the work.

I would like to express my great thankful to **Prof. Dr. Mahmoud Hussin Ahmed,** Professor of Oceanography and Coastal studies, Marine Science Department,

National Authority for Remote Sensing and Space Sciences, for his supervision and

assistance.

I am indebted to **Dr. Sameh Bakr El-Sayed El-Kafrawy**, Researcher in Marine Science, Marine Science Department, National Authority for Remote Sensing and Space Sciences, for his teaching, guidance, valuable suggestions, encouragement and continuous direction throughout the work.

Finally, no words seem to be sufficient to describe how much I owe to my beloved **Prof. Dr. Waheed Mahmoud Emam** for his spiritual inspiration and super encouragement to be able to fulfill this work.

Contents

List of Figures	i
List of Tables	viii
List of Abbreviations	xii
List of Symbols	xvi
Abstract	xvii
General Introduction	1

<u>Chapter 1</u> : Integrated field studies, remote sensing and GIS approach for monitoring water quality parameters in Bardawil Lagoon, Egypt.	14	
1.1. Introduction and Review	14	
1.2. Materials and Methods	17	
1.2.1. Water quality sampling	17	
1.2.2. Landsat-8 Dataset.	20	
1.2.2.1. Landsat-8 images of Bardawil Lagoon.	22	
1.2.2.2. Conversion of DN of Landsat-8 OLI to Top of Atmosphere Reflectance	23	
1.2.2.3. Band Rationing	25	
1.2.3. Development of regression models for estimating WQPs from satellite data.		
1.2.4. Application of the regression models to the study area.		
1.3. Results and Discussion	29	
1.3.1. Descriptive statistics of water quality measurements	30	
1.3.1.1. Salinity (‰).		
1.3.1.2. Water Temperature (°C)		
1.3.1.3. pH		
1.3.1.4. Dissolved Oxygen (mg/l)		
1.3.1.5. Depth (m)		
1.3.2. Landsat-8 measurements		
1.3.3. Correlation analysis and multiple regression models		
1.3.3.1. Salinity (‰).	44	
1.3.3.2. Water Temperature (^o C)	44	

1.3.3.3. pH	45
1.3.3.4. Dissolved Oxygen (mg/l)	45
1.3.3.5. Depth (m)	45
1.3.4. Water quality interpolation	65

<u>Chapter 2</u> : Detecting spatiotemporal changes qualitatively in Bardawil Lagoon.	
2.1. Introduction and Review	75
2.2. Materials and Methods	77
2.2.1. Materials	77
2.2.1.1. Hardware	77
2.2.1.2. Software	77
2.2.1.3. Data	78
a. Landsat Satellite Data	78
b. Google Earth Satellite Data	80
2.2.2. Methods	80
2.2.2.1. Image processing	80
2.2.2.2. On-screen digitization	84
2.2.2.3. Vector Data Analysis	88
2.3. Results and Discussion	90
2.3.1. Boundary (Water body)	90
2.3.1.1. Bardawil Lagoon	91
2.3.1.2. Zaranik Lagoon	98
2.3.2. Sandbar	102
2.3.2.1. Western sandbar	103
2.3.2.2. Middle sandbar	103
2.3.2.3. Eastern sandbar	107
2.3.2.4. Zaranik sandbar	107
2.3.3. Tidal Inlets [=Boughaz]	110
2.3.3.1. Artificial inlets	110
a. Boughaz I	114
b. Boughaz II	116
2.3.3.2. Natural temporary inlets	118
2.3.4. Shoreline	121

<u>Chapter 3</u> : Fisheries of Bardawil Lagoon.	129
3.1. Introduction and Review	129
3.2. Materials and Methods	132
3.2.1. Data Collection	133
3.2.2. Data Analysis	133
1. Monthly catch (Tonnes)	133
2. Total annual fish catch (Tonnes)	134
3. Fishing effort	136
4. The Maximum Sustainable Yield (MSY)	136
5. Relative fishing power (PA)	138
3.3. Results and Discussion	139
3.3.1. Fishing gears used in Bardawil Lagoon	139
3.3.2. Catch composition	149
3.3.3. Catch statistics	152
3.3.3.1. Monthly catches	152
a. Most productive months for each fish group	152
b. Most dominant fish group in catch per month	159
3.3.3.2. Annual catch	162
3.3.4. Productivity	186
3.3.4.1. Monthly	186
3.3.4.2. Annually	187
3.3.5. Fishing effort	189
3.3.6. Maximum Sustainable Yield (MSY)	195
3.3.7. Relative fishing power	197
3.3.8. Exploitation rate (E)	200

<u>Chapter 4</u> : Bardawil Management Plan.	
4.1. Introduction and Review	
4.2. Materials and Methods	
4.2.1. Materials	208
4.2.2. Methods	

4.3. Results a	and Discussion	209
4.3.1. DPS	SIR framework for managing pressures due to anthropogenic factors	214
1.	Urbanization	214
2.	Tourism and recreational activities	216
3.	Salt industry	220
4.	Fishing	224
5.	Agriculture and land reclamation	230
6.	Transportation	233
4.3.2. DPS	SIR framework for managing pressures due to natural factors	236
1.	Pressures due to tide, wind and currents	236
2.	Pressures due to rate of rainfall	239
3.	Pressures due to migratory birds and sea turtles	239
4.3.3. Pre	ssures due to natural factors associated with anthropogenic factors	243
4.3.4. Mai	n impacts due to anthropogenic and natural factors	244
1.	Inlet siltation	244
2.	Change in Bardawil Lagoon's area	248
3.	Water quality	250
4.	Food web	252
4.3.5. Cor	nflicts in Bardawil Lagoon due to anthropogenic factors	256
1.	Between urbanization and resources	256
2.	Between urbanization and economic activities	256
3.	Between economic activities and resources	256
4.	Between different economic activities	257
4.3.6. Pro	posed responses to mitigate anthropogenic and natural impacts	258
1.	Monitoring programs using RS and GIS for managing Bardawil Lagoon.	258
2.	Empowering legal framework	261
3.	General responses to mitigate impacts of pressures facing Bardawil Lagoon	262

Conclusions and Recommendations	264
English Summary	269
References	299
Arabic Summary	
Arabic Abstract	

List of Figures

Figure (1):	The main components involved in remote sensing technology.	6
Figure (2):	GIS components.	8
Figure (3):	Location of study area.	11
Figure (1.1):	Sampling sites of Bardawil Lagoon. False color composite of Landsat-8 image (RGB = 653).	18
Figure (1.2):	Measured against predicted values of salinity in 12 stations at Bardawil Lagoon during March, June, September and December 2014.	56
Figure (1.3):	Measured against predicted values of water temperature in 12 stations at Bardawil Lagoon during March 2014.	58
Figure (1.4):	Measured against predicted values of pH in 12 stations at Bardawil Lagoon during June, September and December 2014.	59
Figure (1.5):	Measured against predicted values of DO in 12 stations at Bardawil Lagoon during March, June, September and December 2014.	61
Figure (1.6):	Measured against predicted values of depth in 12 stations at Bardawil Lagoon during March, June, September & December 2014.	63
Figure (1.7):	Cartographic maps of salinity distribution as obtained from GIS analysis in Bardawil Lagoon during March, June, September and December 2014.	66
Figure (1.8):	Cartographic map of water temperature distribution as obtained from GIS analysis in Bardawil Lagoon during March 2014.	67
Figure (1.9):	Cartographic maps of pH distribution as obtained from GIS analysis in Bardawil Lagoon during June, September and December 2014.	69

Figure (1.10):	Cartographic maps of DO distribution as obtained from GIS analysis in Bardawil Lagoon during March, June, September & December 2014.	71
Figure (1.11):	Cartographic maps of depth distribution as obtained from GIS analysis in Bardawil Lagoon during March, June, September and December 2014.	73
Figure (1.12):	Bathymetric charts as obtained from GIS analysis with contour interval 0.1 m in Bardawil Lagoon during March, June, September and December 2014.	74
Figure (2.1):	Landsat TM (May 1984) used in the present study for Bardawil Lagoon (Scale = 1:280,340).	82
Figure (2.2)	Landsat OLI (May 2014) used in the present study for Bardawil Lagoon (Scale = 1:280,340).	83
Figure (2.3)	Create New Shapefile window in ArcCatalog.	85
Figure (2.4)	Digitizing Bardawil's boundary 2014 (polygon shapefile) at scale: 1:24,000 in ArcMap 10.1.	87
Figure (2.5):	Diagram showing how "Erase" tool works in ArcMap 10.1 (Source: ArcGIS Help 10.1, 2013).	89
Figure (2.6):	Map showing the boundaries of the two water bodies (Bardawil and Zaranik Lagoon) under investigation.	90
Figure (2.7):	Change map of Bardawil's boundary in the lagoon's western arm (sector 1) in years 1984 and 2014. (A): Digitized overlaid boundaries. (B): Sites of erosion and sedimentation.	94
Figure (2.8):	Change map of Bardawil's boundary (sector 2) for years 1984 and 2014. (A): Digitized overlaid boundaries. (B): Sites of erosion and sedimentation.	95
Figure (2.9):	Change map of Bardawil's boundary (sector 3) for years 1984 and 2014. (A): Digitized overlaid boundaries. (B): Sites of erosion and sedimentation.	96

Figure (2.10):	Change map of Bardawil's boundary (sector 4) for years 1984 and 2014. (A): Digitized overlaid boundaries. (B): Sites of erosion and sedimentation.	97
Figure (2.11):	Landsat TM (1984) and Landsat OLI (2014) images for Zaranik Lagoon at scale 1:30,000.	99
Figure (2.12):	Change map of Zaranik Lagoon's boundary for years 1984 and 2014. (A): Digitized overlaid boundaries. (B): Sites of erosion and sedimentation.	100
Figure (2.13):	Bardawil Lagoon map showing Western, Middle, Eastern and Zaranik sandbar (Scale = 1:277,843).	102
Figure (2.14):	Change map of Western sandbar for years 1984 and 2014. (A): Digitized overlaid sandbars. (B): Sites of erosion and sedimentation.	105
Figure (2.15):	Change map of Middle sandbar for years 1984 and 2014. (A): Digitized overlaid sandbars. (B): Sites of erosion and sedimentation.	106
Figure (2.16):	Change map of Eastern sandbar for years 1984 and 2014. (A): Digitized overlaid sandbars. (B): Sites of erosion and sedimentation.	108
Figure (2.17):	Change map of Zaranik sandbar for years 1984 and 2014. (A): Digitized overlaid sandbars. (B): Sites of erosion and sedimentation.	109
Figure (2.18):	Landsat data showing changes in Boughaz I throughout the period from 1984 to 2014 (Scale = 1:100,000).	112
Figure (2.19):	Landsat data showing changes in Boughaz II throughout the period from 1984 to 2014 (Scale = 1:60,000).	113
Figure (2.20):	Change map of area surrounding Boughaz I for years 1984 and 2014. (A): Digitized overlaid sandbars. (B): Sites of erosion and sedimentation.	115
Figure (2.21):	Change map of area surrounding Boughaz II for years 1984 and 2014. (A): Digitized overlaid sandbars. (B): Sites of erosion and sedimentation.	117