Study of Connective Tissue Disease Associated Pulmonary Hypertension

Thesis

Submitted For Partial Fulfillment of M.D.degree in Chest Diseases and Euberculosis

By

Mohamed Abd El Monem Mohamed

M.B., B. Ch, M Scin Chest Diseases

Supervised by

Prof./ Mona Mansour Ahmed

Professor of Chest Diseases Faculty of Medicine /Ain Shams University

Prof./ Iman Hassan ELsayed Galal

Professor of Chest Diseases Faculty of Medicine /Ain Shams University

Dr./ Ashraf Adel Gomaa

Associate Professor of Chest Diseases Faculty of Medicine /Ain shams university

Dr./ Ayman Abdel Hamid Farghaly

Consultant Pulmonary Medicine Military Respiratory Center

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

First of all, thanks for AUAH who gave me the power to complete this work.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Mona Mansour Alumed**, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for her encouragement, her kind support and appreciated suggestions that guided me to accomplish this work. Many thanks & gratitude for her.

I am also grateful to **Prof. Iman Hassan Elsayed Galal**, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, who freely gave her time, effort and experience along with continuous guidance throughout this work.

I would like also to express my deepest thanks for **Dr. Ayman Abdel Hamid Farghaly,** Consultant Pulmonary Medicine, Military Respiratory Center, for his continuous follow up and guidance throughout the work.

I wish to introduce my deepest thanks to **Dr. Ashraf Adel Gomaa**, Associate Professor of Chest Diseases, Faculty of Medicine, Ain Shams University,, for his kindness, supervision and cooperation in this work.

Last but not least, many thanks to my family and my colleagues for their continuous support.

Finally, I would present all my appreciations to my patients without them, this work could not have been completed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Pulmonary Hypertension	4
Connective Tissue Disease Associated Pulmona Hypertension	
Right Heart Catheterization	
Subjects and Methods	94
Results	
Discussion	124
Limitations of the Study	132
Summary	133
Conclusion	137
Recommendations	138
References	139
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	Comperhensive clinical classificati		7
Table (2):	Haemodynamic definitions of pulm hypertension	onary	
Table (3):	Updated risk level of drugs and the known to induce pulmonary are	terial	10
Table (4):	hypertension	of matic onary	
Table (5):	Echocardiographic signs sugger pulmonary hypertension used to a the probability of pulmonary hypertension in addition to trick regurgitation velocity measurements.	esting assess onary cuspid	21
Table(6):	Table 4 PA: pulmonary arteryRisk assessment in pulmonary ar	terial	
Table (7):	hypertension	the CTD-	29
Table (8):	PAH. Potential reasons for poorer outcomes SSc-PAH than in IPAH.	me in	38
Table (9):	Key causative mechanisms of PA systemic lupus erythematosus.	H in	
Table (10):	Possible risk factors for the developm PH in systemic lupus erythematosus.	ent of	
Table (11):	Recommendations for right catheterization in pulm	heart	
Table (12):	hypertensionRecommendations for vasoreac		75
1 abic (12).	testing	v	89

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (13):	Baseline characteristics of the s	studied	
	population:		106
Table (14):	STEP 1 parameters among s	studied	
	patients:		107
Table (15):	STEP 2 parameters among s	studied	
	patients:		
Table (16):	RHC results among studied patient	cs:	109
Table (17):	Comparison between step 1 resu	ılt and	
	confirmed diagnosis with RHC:		
Table (18):	Comparison between step 2 resu	ılt and	
	confirmed diagnosis with RHC:		111
Table (19):	Diagnostic performance of Step	1 for	
	diagnosis of PAH among SSc patien	tts :	115
Table (20):	Diagnostic performance of Step		
	diagnosis of PAH among SLE paties		
Table (21):	Diagnostic performance of Step		
	diagnosis of PAH among RA:		117
Table (22):	Diagnostic performance of Step		
	diagnosis of PAH among SSc patien		118
Table (23):	Diagnostic performance of Step	2 for	
	diagnosis of PAH among SLE paties	nts:	119
Table (24):	Diagnostic performance of Step		
	diagnosis of PAH among RA patient		120
Table (25):	Comparison between all dia		
	regarding mPAP:		
Table (26):	Distribution of final PAH dia	_	
	among different diagnoses:		121
Table (27):	Correlation between mPAP		
	FVC%/DLco% predicted and	$\mathrm{DLco}\%$	
	nredicted:		122

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Survival in PAH after diagnosis patients with existing CHD, Portopuli IPAH, CTD and HIV	m,
Figure (2):	The pie chart on the left shows the causes of Pulmonary artering hypertension	al
Figure (3):	Schematic diagram of a pulmona vascular cell showing the possib mechanisms leading to vasoconstriction and/or proliferation of the pulmona	ry lle on
	vascular component cells	15
Figure (4):	Diagnostic algorithm of PH	26
Figure (5):	Evidence based treatment algorithm f pulmonary arterial hypertensic	
	patients	
Figure (6):	Patients with PH in association will connective tissue disease may sit group 1 (pulmonary arterity hypertension), group 2 (PH associated with left heart disease) or group 3 (Phassociated with lung disease) while group 4 (chronic thromboembolic).	th in al ed PH ile lic
	pulmonary hypertension) disease mu	
Figure (7):	also be excluded	nd all na

List of Figures (Cont...)

Fig. No.	Title Pag	ge No.
Figure (8):	Patient with Systemic sclerosis, interstitial lung disease and pulmonary hypertension Apical four chamber view - Doppler image showing tricuspid regurgitant jet with moderate tricuspid	
	regurgitation	
Figure (9):	Key points to be evaluated when managing SSc-PAH	
Figure (10):	Pathophysiology of pulmonary hypertension in systemic lupus erythematosus	
Figure (11):	Role of inflammation and Dysregulated immune response in the development of	
Figure (12):	PAH in SLE The double lumen balloon flotation catheter and its placement at the bedside without fluoroscopy and by	
E' (19)	monitoring intracardiac pressures	73
Figure (13):	Pulmonary Artery (Swan-Ganz) Catheter	
Figure (14):	Best practice recommendations for right heart catheterization: pressure	
Figure (15):	transducer and zeroing	82
Figure (16):	(PAWP)	
	of the likelihood of pulmonary arterial hypertension and cut-off points for decision to refer a patient to echocardiography and subsequent right heart catheterization.	97

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (17):	Pulmonary artery catheter (7.5 F) u	ısed
_	for collecting hemodyna	amic
	measurements	98
Figure (18):	Cardiac catheterization labora	tory
	outfitted with computer	ized
	hemodynamic monitoring systems u	ısed
	by chest specialized hospital Ke	obry
	Elkobba Armed Forces	101
Figure (19):	Roc curve for detecting cutoff value	e for
	step 1	112
Figure (20):	Roc curve for detecting cutoff value	e for
	step 2	113
Figure (21):	Shows correlation between mPAP	and
	FVC%predicted/DLco%predicted	123
Figure (22):	Shows correlation between mPAP	and
	DLco%predicted	123

List of Abbreviations

Abb.	Full term
%	Percentage
>	
	5hydroxytryptamine transporter
	6-minute walking test
	Asymmetric dimethylarginine
	Antiendothelial cell autoantibodies
	Anti-nuclear antibody
	Analysis of variance
	Anti-ribponucleic protein
	Area under the curve
	Bone morphogenetic protein receptor, type 2
	Brain natriuretic peptide
	Body surface area
	Cyclic adenosine monophosphate
	Cyciic adenosine monophosphaie Calcium channel blocker
	Chemokine Ligand 5
	_
	Cyclic guanosine monophosphate
	Congenital heart disease
	Cardiac index
	Centimeter
	Cardiac magnetic resonance
	Cardiac output
	Chronic obstructive pulmonary disease
-	Combined post-capillary and pre-capillary PH
	Cardiopulmonary exercise testing
CREST	Calcinosis, Raynaud phenomenon, esophageal
C/T	dysmotility, sclerodactyly, and telangiectasia
	computed tomography
<i>CTD</i>	Connective tissue disease:

List of Abbreviations (cont...)

Abb.	Full term
	Connective tissue diseases
<i>CTEPH</i>	Chronic thromboembolic pulmonary hypertension
CTPA	CT pulmonary angiogram
CX3CL1	Chemokine Ligand 1
dcSSc	Diffuse cutaneous systemic sclerosis
DLco	Diffusion lung capacity for carbon monoxide
<i>DPAH</i>	Drug-induced PAH
<i>DPG</i>	Diastolic pressure gradient
ECG	Electrocardiogram
<i>EGF</i>	Endothelial growth factor
<i>EIF2AK4</i>	Eukaryotic Translation initiation factor 2
	$alpha\ kinase\ 4$
<i>EMG</i>	Electromyogram
ESC/ERS	European Society of Cardiology and the
D/D 1	European Respiratory Society
ET-1	
ETA	
ETB	
	Forced vital capacity
	Heart failure with preserved ejection fraction
	human immunodeficiency virus.
	Heritable pulmonary arterial hypertension
<i>i.v</i>	
	Indirect immunofluorescence
	Internal jugular
<i>IL-1</i>	
<i>IL-6</i>	
<i>ILD</i>	Interstial lung disease

List of Abbreviations (Cont...)

Full term Abb. IPAH.....Idiopathic PH Ipc-PHIsolated post-capillary PH LALeft atrium lcSSc.....Limited cutaneous systemic sclerosis LHDLeft heart disease LVleft ventricle LVEDP.....Left ventricular end-diastolic pressure MAPMitogen-activated kinase; BMPR: Bone morphogenetic protein receptor MCTD.....Mixed connective tissue disease mSAP......Mean systemic arterial pressure $N \dots Number$ NFATNuclear factor of activated T cells NONitric oxide NPV.....Negative predictive value NS......No statistically significant difference NT-proBNPN-terminal pro-brain natriuretic peptide PAPulmonary angiography PAC.....Pulmonary arterial catheter PAHPulmonary arterial hypertension PAPmMean pulmonary arterial pressure PASPPulmonary artery systolic pressure PAWPPulmonary arterial wedge pressure PCA.....Prostacyclin analogues PCHPulmonary capillary haemangiomatosis pCO2.....Partial pressure of carbon dioxide PDE-5-IPhosphodiesterase- 5-inhibitors PDGF.....Platelet derived growth factor

List of Abbreviations (Cont...)

Abb.	Full term
<i>PEA</i>	Pulmonary endarterectomy
Peak VO2	Peak oxygen uptake
<i>PFTs</i>	Pulmonary function tests
<i>PH</i>	Pulmonary hypertension
<i>Pimax</i>	Maximal inspiratory pressure
<i>PPH</i>	Primary PH
<i>PPHN</i>	Persistent PH of the newborn
<i>PPV</i>	Positive predicted value
<i>pSS</i>	Primary Sjogren's syndrome
PVCs	$ Premature\ ventricular\ contractions$
<i>PVOD</i>	Pulmonary veno-occlusive disease
<i>PVR</i>	Pulmonary vascular resistance
<i>R</i>	Correlation
<i>RA</i>	$R heumatoid\ arthritis$
RANTES	Regulated upon activation, normal T cell
	expressed and secreted
<i>RAP</i>	Right atrial pressure
<i>RBBB</i>	Right bundle-branch block
<i>RHC</i>	Right heart catheterization
<i>ROC</i>	Reciever operating characteristic
<i>Rt</i>	Right
<i>RV</i>	Right ventricular
<i>RVP</i>	Right ventricular pressure
<i>RVSP</i>	Right ventricular systolic pressure
S	Statistically significant
Scl70	Scleroderma 70
<i>SD</i>	Standard deviation
<i>SLE</i>	Systemic lupus erythematosus

List of Abbreviations (Cont...)

Abb. Full term

<i>SNPs</i>	Single nucleotide polymorphisms
<i>SPSS</i>	Statistical package for social science
SSc	Systemic sclerosis
SSc-PAH	Systemic sclerosis associated pulmonary arterial hypertension
SvO2	Mixed venous oxygen saturation
SVR	Systemic vascular resistance
TAPSE	Tricuspid annular plane systolic excursion
TGF-b	Transforming growth factor-b
<i>TPG</i>	Transpulmonary pressure gradient
TR	Tricuspid regurgitant jet
TTE	Transthoracic echocardiogram
<i>UK</i>	.United Kingdom
<i>USA</i>	United States of America
V/Q	.Ventilation/perfusion
VE/VCO2	Ventilator equivalents for carbon dioxide
<i>VEGF</i>	.Vascular endothelial growth factor
<i>VF</i>	Ventricular fibrillation
<i>VIP</i>	Vasoactive intestinal peptide
VO2	Oxygen consumption
VO2/HR	Oxygen pulse
<i>VPAC</i>	.VIP receptors
VT	Ventricular tachycardia
<i>WHO</i>	World Health Organization.
WHO-FC	World Health Organization functional class.
WSPH	World Symposium on PH
<i>WU</i>	.Wood units

INTRODUCTION

ulmonary hypertension (PH) is a substantial global health issue in which all age groups are affected with rapidly growing importance in elderly people. (1)

PH embraces a variety of diseases that have little in common apart from elevated blood pressure in the pulmonary circulation. (2)

Precise diagnostic classification of pulmonary hypertension is essential, not least for reasons of treatment and prognosis, because treatment options that are efficacious in some forms of pulmonary hypertension may be ineffective or even disadvantageous in other forms. (2)

Pulmonary arterial hypertension (PAH) affects 0.5–15% of patients with connective tissue diseases (CTDs) and is one of the leading causes of mortality in systemic sclerosis (SSc) and mixed connective tissue disease (MCTD). Despite increasing recognition of PAH in CTDs, the diagnosis is often delayed, which may lead to unfavorable outcomes in these patients. (3)

Screening for PAH in SSc allows for earlier detection and treatment that prolongs survival and improves symptoms but it is important that clinicians who follow SSc patients screen and act upon the results, such as referring suspected PAH for right heart catheterization (RHC) and treatment at an expert center. (4)