

Study of the specific radioactivity for volcanic and rock samples using different nuclear techniques

THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF
DOCTOR OF PHILOSOPHY DEGREE
IN TEACHER PREPARATION IN SCIENCE
(Nuclear Physics)
TO
PHYSICS DEPARTMENT
FACULTY OF WDUCATION
AIN SHAMS UNIVERSITY
By

Nasser Abdullah Saghir Al-Galal M.Sc.of teacher preparetion in physics

Supervised By

Prof. Dr. A.H.Ashry
Prof. Dr. W. M. Arafa
Dr. M. A. Abou-leila

Ain Shams University Faculty of Education Physics Department

Title of thesis

Study of the specific radioactivity for volcanic and rock samples using different nuclear techniques

Name of Student: Nasser Abdullah Saghir Al-Galal

Supervised By

Approved

1-Prof. Dr. A.H.ASHRY

Prof. of Nuclear Physics Faculty of Education Ain Shams University.

2- Prof. Dr. HUSSEIN MAHMOUD EL-SAMMAN

Prof. of Nuclear Physics Faculty of Science Minoufiya University.

3-Prof. Dr. WAFAA MAHMOUD ARAFA

Prof. of Nuclear Physics Faculty of Women Ain Shams University.

4- Dr. MOHAMED ABOU-LEILA

Ass. Prof.of Nuclear physics Faculty of Education Ain Shams University.

ACKNOWLEDGMENT

I wish to express my sincere thanks to the almighty God for seeing me through another level of my education.

Also i would like to take this opportunity to express my gratitude to those people giving me help throughout my whole study period.

My deepest thanks and gratitude to **Prof.Dr/ Mahmoud Yassin** the head of Physics, Faculty of Education, Ain Shams University.

My deepest thanks and gratitude to **Prof.Dr/ Ashry Hasan Ashry**, Professor of Nuclear Physics, Faculty of Education, Ain Shams University, for his continuous supervision, providing the necessary facilities and valuable encouragement during the course of this work.

My gratitude and deep thanks to **Prof. Dr H. M. EL-Samman**, Professor of Nuclear Physics, Faculty of Science, Menofia University, for his effort, and fruitful help, continuous supervision, guidance and valuable encouragement during the course of this work, and who gave me some of his valuable time and advice during my work in the radon laboratory.

My utmost gratitude and deep thanks to **Prof. Dr W. M. Arafa**, Professor of Nuclear Physics, Faculty of Women, Ain Shams University, for suggesting the problem and for her kind supervision, fruitful discussions, stimulating suggestions and for her advice through out this work and strong interest in my work, as well as to provide the tools for the study of films and a microscope.

My deepest thanks and gratitude to. **Dr/ Mohamed Ahmed Abou-leila**, Associate Professor of nuclear Physics, Faculty of Education, Ain Shams University, for his everlasting encouragement, continuous supervision, fruitful advice which can never be forgotten.

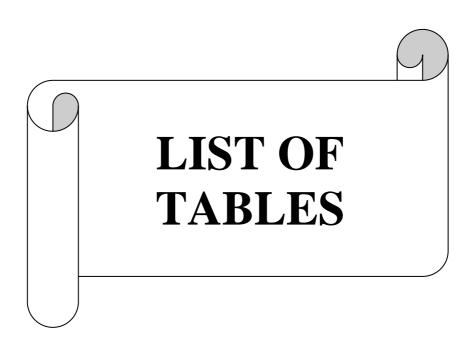
DEDICATION

For all the love and well wishes, am indebted to you greatly. This work is dedicated to the spirit my father.

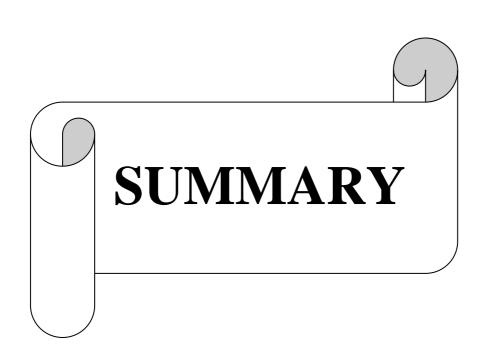
Contents

Acknowledgment		
Dedication	ii	
List of Figures		
List of Tables		
Summary	ix	
Abstract	xi	
Chapter one: Introduction		
1.1.Introduction	1	
1.2. Sources of radiation	2	
1.2.1 Natural sources of radiation	4	
1.2.1.1. Series Radionuclides	6	
1.2.1.2. Non-series radionuclides.	15	
1.2.1.3. Cosmic Rays	16	
1.2.2 Artificial sources of radiation	20	
1.2.3. Terrestrial radiation	20	
1.2.3.1 External exposures	21	
1.2.3.2 Internal exposure	23	
1.4. Attenuation of gamma-rays		
1.5 Theoretical aspects		
1.5.1 Radioactivity units	29	
1.5.2. Activity(A)	29	
1.5.3. Rontgen	29	
1.5.4 Absorbed dose	30	
1.5.5 Equivalent dose	30	
Chapter two: Historical review		
Historical review	31	
Chapter three: Experiment work and measurement		
3.1Aim of Present Work	42	
3.2 Sample collection		
3.2 -1-a-Sample preparation for gamma	46	

spectroscopy		
3.2.1.b-Sample preparation for radon measurements		
3-3- Gamma spectrometer	49	
3.3.1 Calibration of gamma spectrometer	50	
3-3.1-a- Energy calibration	50	
3-3.1-b- Efficiency calibration	50	
3-3.1-C- Sample counting	51	
3.4. Determination of radon concentration	54	
3.4.1. Radon calibration chamber	54	
3.4.2. Calibration of CR-39 for radon measurements.	58	
3.4.3. Radon exhalation rates	61	
3.4.4. Chemical Etching.	61	
3.4.5. Tracks counting system	63	
Chapter four: Results and discussion		
4.1. Specific activity concentration in volcanic Samples	65	
4.2. Specific activity concentration in rock samples.	78	
4.3. Evaluation of radiological hazard for volcanic	90	
samples		
4.3.1. Absorbed gamma dose rate	90	
4. 3.2. Radium equivalent activity (Ra _{eq})	90	
4. 3.3. External radiation hazard indices (H _{ex})	94	
4. 3.4. Internal radiation hazard indexes (H _{in})	94	
4. 3.5. Annual external effective dose rate	95	
4. 3.6. The gamma activity concentration index	96	
4. 3.7. Annual gonadal dose equivalent (AGDE).	97	
4.4. Evaluation of radiological hazard for rock Samples	98	
4.4.1. Absorbed gamma dose rate	98	
4. 4.2. Radium equivalent activity (Ra _{eq})		
4. 4.3. External radiation hazard indices (H _{ex})	98	
4. 4.4. Internal radiation hazard indexes (H _{in})	99	
4. 4.5. Annual external effective dose rate	100	
4. 4.6. The gamma activity concentration index	100	
4. 4.7. Annual gonadal dose equivalent (AGDE).	100	
4.5. Radon measurements from volcanic samples.	104	


4.6. Radon measurements from rock samples.	111
Conclusions	119
References	122

LIST OF FIGURES


No.	Figure	Page
1.1	The electromagnetic spectrum	3
1.2	Thorium Series (4n)	8
1.3	Neptunium series (4n+1)	12
1.4	Uranium series (4n +2)	13
1.5	The Actinium series (4n+3)	14
1.6	The interaction of cosmic rays with the nitrogen	19
	formation ¹⁴ C atoms are quickly oxidized in the	
	atmosphere.	
1.7	Linear attenuation coefficients in germanium.	28
	Dashed lines indicate separate contributions due to	
	the photoelectric effect, Compton scattering and	
	pair production	
3.1	Locations of the volcanic samples	43
3.2	Locations of the rock samples.	43
3.3	Experimental setup for the measurement of radon	48
	exhalation rate using "Sealed Can Technique".	
3.4	Block diagram of the gamma spectrometer	49
3.5	Energy calibration curve	52
3.6	Efficiency calibration curve	53
3.7	Radon calibration chamber	57
3.8	Track density versus radon concentration.	60
3.9	Calibration factor (K) of CR-39 versus radon	60
	concentration.	
3.10	Schematic construction of the used etching	62
	equipment for track revelation.	
3.11	A photograph of α-tracks as counted using image	64
	analyzer.	
3.12	Track counting system	64
4.1	Locations of the volcanic samples	67
4.2	The variation of ²³⁸ U concentration with the	70
	number of the volcanic samples	
4.3	The variation of ²³² Th concentration with the	71

	number of the volcanic samples	
4.4	The variation of ⁴⁰ K concentration with the	72
	number of the volcanic samples	
4.5	Variation of Th/U ratio with different samples	75
4.6	Variation of Th/K ratio with different samples.	76
4.7	Variation of U/K ratio with different samples.	77
4.8	Locations of the rock samples	80
4.9	The variation of ²³⁸ U concentration with the	83
	number of the rock samples	
4.10	The variation of ²³² Th concentration with the	84
	number of the rock samples	
4.11	The variation of ⁴⁰ K concentration with the	85
	number of the rock samples	
4.12	Variation of Th/U ratio with different samples	87
4.13	Variation of Th / K ratio with different samples	88
4.14	Variation of U/K ratio with different samples	89
4.15	The variation of radon concentration with the	110
	number of the volcanic samples	
4.16	Radon exhalation rate versus radon concentration	111
	in volcanic samples.	
4.17	The variation of radon concentration with the	117
	number of the rock samples	
4.18	The variation of radon exhalation rate with the	118
	radon concentration.	

LIST OF TABLES

No	Table	Page
1.1	Primordial natural radionuclides, half-lives,	5
	isotopic abundance and the type of decay (α , β -, γ	
	and electron capture EC).	
1.2	Natural radioactive series	13
1.3	Natural radionuclides produced by cosmic	18
	radiation	
1.4	Physical data for radionuclides of natural origin	25
3.1	Samples and Sites descriptions for volcanic	44
	samples.	
3.2	Samples and Sites descriptions for rock samples	45
4.1	Specific activity of ²³⁸ U, ²³² Th and ⁴⁰ K, the	68
	isotopic ratio of Th/U, Th/K and U/K are also	
	listed for in the volcanic samples.	
4.2	Specific activity of ²³⁸ U, ²³² Th and ⁴⁰ K, the	81
	isotopic ratio of Th/U, Th/K and U/K are also	
	listed for in the rock samples.	
4.3	Absorbed gamma dose rate, Annual external	92
	effective dose rate E, radium equivalent activity,	
	External hazard index, Internal hazard index	
	,Gamma activity concentration index and Annual	
	gonadal dose equivalent (AGDE) in volcanic	
	samples.	
4.4	Absorbed gamma dose rate, Annual external	102
	effective dose rate E, radium equivalent activity,	
	External hazard index, Internal hazard index	
	,Gamma activity concentration index and Annual	
	gonadal dose equivalent (AGDE) in rock samples	
4.5	Radon concentration, radon exhalation rate and	107
	mass exhalation rate for volcanic sample.	
4.6	Radon concentration, radon exhalation rate and	114
	mass exhalation rate for rock sample	

Summary

This work aims to measure the natural radioactivity levels, radon exhalation rate and mass exhalation rate in volcanic and rock samples in some Yemen areas.

In the present study the radioactivity levels of the collected samples using high purity Germanium detector spectrometers has been determined. The measurement of radon concentration, radon exhalation rate and mass exhalation rate of radon (222Rn) have been done using the cup-technique making use nuclear track detectors (CR-39).

In order to achieve this aim, the thesis is composed of four chapters: Chapter one:

It consists of an introduction, natural and artifical sources of radiation, terrestrial radiation, gamma-ray interactions in matter and theoretical aspects.

Chapter two:

It contains a historical review of the work.

Chapter three:

This chapter contains a detailed identification of the areas under investigation, samples collection, samples preparation and the different techniques used in the present measurements. The activity concentration of ²³⁸U, ²³²Th, and ⁴⁰K are also measured using active

techniques. Finally, radon exhalation rates are also determined using cup-technique

Chapter four:

This chapter contains the results obtained throughout the present work. The activity concentration of terrestrial radionuclides ²³⁸U, ²³²Th and ⁴⁰K have been determined using high purity Germanium detector spectrometers. Fvaluation of radiological hazard as well as radon concentration, radon exhalation rate and mass exhalation rate of ²²²Rn have been obtained using cup technique. The obtained values were compared to the international values