

INNOVATION IN THE INTENSIVE CARE UNIT DESIGN AND POLICY

Presented By

Shirin Fekry Abd Elazim Emara M.M.B.B.CH, Faculty of Medicine Misr University for Science and Technology

Supervised By

Prof. Dr. Sherif Wadie Nashed

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Heba Bahaa El Din El Serwi

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Mayar Hassan El Sersi

Lecturer of Anesthesia and Intensive Care Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Professor Dr. Sherif Wadie Nashed, Professor of Pathology for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Professor Dr. Heba Bahaa El Din El Serwi, Professor of Pathology for her sincere efforts, continuous support, fruitful encouragement and guidance throughout the whole work.

I am deeply thankful to Professor Dr. Mayar Hassan El Sersi, Professor of Pathology for her great help, outstanding support, active participation and guidance.

Finally, I would like to thank, my beloved family, to whom I owe everything I ever did in my life and will achieve.

Shìrìn Fekry

List of Contents

	Title	Page No.
Introd	luction	1
Aim o	f the work	5
Revie	w of Literature	
•	Basics of ICU	6
•	ICU Design	19
•	Policies of ICU	43
•	Criteria for ICU Admission & Discharge	85
•	ICU Team, Ethics & Medical information With the F	² amily 97
Sumn	nary	112
References		115
Arabi	c Summary	

List of Tables

Table No. Title Page No.

Table (1):	Summary of key Recommendation for Minimal standards in ICU	10
Table (2):	Indicative List of Equipment (12 Bedded ICU and 8 Bedded HDU)	11
Table (3):	Therapeutic elements in the ICU environment	31
Table (4):	Risk factors for venous thromboembolism	48
Table (5):	Indication and contraindication of intravenous access	54
Table (6)	Procedure of endotracheal tube insertion	58
Table (7):	Abnormalities suggestive for need of Mechanical ventilation	61
Table (8):	Commonly used clinical parameters that predict successful weaning from mechanical ventilation	64
Table (9):	Types of naso-gastric tubes	66
Table (10):	Procedures of nasogastric tube insertion	68
Table (11):	Type of catheters and materials	71
Table (12):	Example of Objective Parameters Model	88
Table (13):	Perceptions of medically futile care described by respondents working in intensive care units	93
Table (14):	Level of care	. 102

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Fixed head panel	30
_	Free standing system.	
Figure (3):	Decentralized nursing station	34
Figure (4):	Centralized nursing station	34
Figure (5):	Hospital mortality:	39
Figure (6):	Types of Endotracheal tubes	56

Full term Abb. **AAH** Academy of Architecture for Health **AAST** American Association for the Surgery of Trauma **ACE** Angiotensin converting enzyme **ACS** Acute coronary syndrome **ACTH** Adreno cortico tropic hormone AIA American Institute of Architects **AIS** Abbreviated Injury Score **ALF** Acute liver failure **ALL** Acute lymphocytic leukemia **AMI** Acute myocardial infarction **AMI** Acute mesenteric ischemia AP Anatomic Profile **APACHE** Acute physiology and chronic health aPTT Activated partial thromboplastin time **ARAS** Reticular activating system **ARDS** Adult respiratory distress syndrome **ARF** Acute renal failure **ASA** American Society of Anesthesiologist A Severity Characterization of Trauma **ASCOT ASIA** American spinal injury association **ATLS** Acute tumor lysis syndrome **ATN** Acute tubular necrosis ATS American Thoracic Society Atrio ventricular \mathbf{AV}

Abb. Full term

AVM Arterio venous malformation

BMI Body mass index

BTS British Thoracic Society

CABG Coronary artery bypass graft

CAP Community acquired pneumonia

CCO Critical care outreach

CHF Congestive heart failure

CK Creatine kinase

CK-MB Creatinine Kinase M band

CMI Chronic mesenteric ischemia

CNS Central nervous system

COPD Chronic obstructive pulmonary disease

CPOE Computerized Physician Order Entry

CRAMS Circulation, Respiration, Abdomen, Motor, Speech

CRRT Continuos Renal Replacement Therapy

CSSD Central Sterile Supply Department

CT Computed tomograph

CVP Central venous pressure

CXR Chest X ray

DAI Diffuse axonal injury

DIC Disseminated intravascular coagulation

DKA Diabetic ketoacidosis

DNR Do not resuscitate

Abb. Full term

ECG Electrocardiogram

ED Emergency department

ERCP Endoscopic retrograde cholangio pancreatography

ESCC Epidural spinal cord compression

EWS Early-warning score

FEV Forced expiratory volume

FIO2 Fraction of inspired oxygen

FOUR Full Outline of Un Responsiveness

FVC Forced vital capacity

GCS Glascow coma score

GFR Glomerular filtration rate

GIT Gastro intestinal tract

HAART Highly active antiretroviral therapy

HARM Harborview Assessment for Risk of Mortality

HCV Hepatitis C virus

HDU High Dependency Unit.

HELLP Hemolysis, elevated liver enzymes, low platelets

HHS Hyperosmolar hyperglycemic non ketotic syndrome

HIV Human immunodeficiency virus

HOCM Hypertrophic obstructive cardiomyopathy

HRS Hepato renal syndrome

HTN Hypertension

HVRs High visible rooms

Abb. Full term

ICD Implantable cardioverter defibrillator

ICD International Classification of Diseases

ICF Intra cellular fluid

ICH Intracerebral haemorrhage

ICISS International Classification of Diseases based Injury Severity Score

ICU Intensive care unit

IE Infective endocarditis

IEEE Institute of Electrical and Electronics Engineers

INR International normalized ratio

ISS Injury Severity Score

Kph Kilo per hour

LBBB Left bundle branch block

LV Left ventricle

LVRs Low visible rooms

MELD Model for end-stage liver disease

METs Medical emergency teams

MRI Magnetic resonance imaging

MSCC Malignant spinal cord compression

MVCs Motor vehicle crashes

NASH Nonalcoholic steatohepatitis

NCCU Neurocritical care units

NG Naso gastric

NIBP Non-invasive measurement of blood pressure

Abb.	Full term
NIH	National Institutes of Health
NISS	New Injury Severity Score
NOMI	Nonocclusive mesenteric ischemia
NSAIDS	Non steroidal anti inflammatory drugs
NSU	Neuro science ICU
OIS	Organ Injury Scale
PA	Pulmonary artery
PATI	Penetrating Abdominal Trauma Index
PC	Prothrombin concentration
PCI	Per catenous coronary intervention
PCP	Pneumocystis pneumonia
PPCM	Peripartum cardiomyopathy
PT	Prothrombin time
PTH	Parathormon hormone
PTHrP	parathyroid hormone-related protein
RBCs	Red blood cells
RIFLE	Risk, Injury, Failure, Loss, End stage
RPLS	Reversible posterior leukoencephalopathy syndrome
RR	Respiratory rate
RRT	Renal Replacement Therapy
RRTs	Rapid response teams
RTS	Revised Trauma Score
RV	Right ventricle
SAH	Sub arachnoid haemorrhage
SAH	Subarachnoid hemorrhage

Full term Abb. **SBP** Spontaneous bacterial peritonitis **SBP** Systolic blood pressure Society of Critical Care Medicine **SCCM SCI** Spinal cord injury **SDH** Subdural hemorrhage SE Status epilepticus **SIRS** Systemic Inflammatory Response Syndrome **SOFA** Sequential Organ Failure Assessment **SRR** Survival Risk Ratios **STEMI** ST segment myocardial infarction **SVC** Superior vena cava syndrome **TBI** Traumatic brain injury TBSA% percentage of total burn surface area **TLC** Total leucocytes count **TRISS** Trauma and Injury Severity Score TS Trauma Score UK United kingdom **UOP** Urine output Upper rate limit **URL URL** Upper rate level V/Q ventilation/ perfusion venous thromboembolism **VTE WBCs** White blood cells **WPW** Wolf Parkinson white syndrome

INTRODUCTION

The intensive care unit is a highly specified and sophisticated area of a hospital which is specifically designed, staffed, located, furnished and equipped, dedicated to management of critically ill patients, injuries or complications. It is a department with dedicated medical, nursing and allied staff. It is operated with defined policies, protocols and procedures, having its own quality control, education, training and research programs. It is emerging as a separate specialty that has to have its own separate team in terms of doctors, nursing personnel and other staff who are tuned to the requirement of the specialty (Narendra et al., 2010).

In 1997 a task force of the European Society of Intensive Care Medicine (ESICM) published a paper aimed to describe minimum requirements for intensive care departments. These recommendations had an impact on guidelines of national intensive care societies as well as legislative documents (e.g., in Greece). Since then intensive care medicine and even more the conditions of its practice have changed considerably causing the need for an update of these recommendations. In 2008 the ESICM Working Group of Quality Improvement (WGQI) addressed this task and was endorsed by the ESICM council and the ESICM executive committee (Andreas Patrick, 2011).

The old concept of identifying the intensive care units as just a separate area with high-tech equipment no longer holds true. The sheer volume of technology, the unfamiliar, sterile surroundings, lack of privacy, constantly revolving medical teams, incessant noise and glaring light, and the lack of natural forms, materials, and sensory experiences all are considered to be a traumatic experience for the patient and his family. As a result, the patients feel trapped in an environment they dislike and cannot control and their families feel helpless so patients and their families are asking for friendly environments that have a more natural feel and look. For that reason the patientcentered design has become the hallmark of most new construction in the health care field where the intensive care unit design should provide comfort to patients, reduce hospital acquired infections and cost of intensive care unit stay. Consequently, improved décor, more privacy, reduced environmental stressors, natural surroundings, and greater patient control are becoming common concerns (Alex, 2004).

The ICU Design Team should be approached by a multidisciplinary team consisting of the ICU medical director, chief the ICU nurse manager, the architect, administration, and the operating engineering staff (Suzanne et al., 1995).

The effective team communication and coordination are recognized as being crucial for improving quality and safety in

acute medical settings such as the intensive care unit (Reader et al., 2006).

The intensive care unit is a dynamic environment with often rapidly changing patient conditions. We have to provide daily, timely information on the patient's condition. Families will be asked to identify a spokesperson that will then be able to inform family and friends about the patient's condition. This ensures that information about the patient is given to the appropriate people. Also, it decreases the number of enquiries that staff receives about each patient. Additional information is available at reception describing the benefits and risks of various procedures the patient may undergo as part of their treatment (Reader et al., 2006).

An ICU should have a policy for patient admission, discharge and deaths as well as policy for patient's management, transferring and procedures done (Robert and Royal, 2010).

Units smaller than 5 or 6 beds are inefficient to operate and manage, It is important to suggest that units larger than 8–9 beds are difficult to design with high quality observation from a central position, which has been a fundamental principle of ICU design from the beginning. If larger numbers are required, suggestion of breaking them into pods or clusters of 7 or 8 beds, grouped together to form a larger department under single management (Kirk, 2010).