EARLY PRODUCTION OF STRAWBERRY USING SOILLESS CULTURE SYSTEMS

By

ENASS NABIL MOHAMED EISSA

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003
M. Sc. Agric. Sc. (Advanced Agricultural systems for Arid Land), Arid
Land Agricultural Graduate Studies and Research Institute, Ain Shams
University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences
(Advanced Agricultural systems for Arid Land)

Arid Land Agricultural Graduate Studies and Research Institute Faculty of Agriculture Ain Shams University

Approval Sheet

EARLY PRODUCTION OF STRAWBERRY USING SOILLESS CULTURE SYSTEMS

By

ENASS NABIL MOHAMED EISSA

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003
M. Sc. Agric. Sc. (Advanced Agricultural systems for Arid Land), Arid
Land Agricultural Graduate Studies and Research Institute, Ain Shams
University, 2010

This	s thesis for Ph.D. degree has been approved by:
]	Sayed Mahmoud Singer Research Prof. Emeritus of Vegetable Crops, National Research Center
]	Ayman Farid Abou-Hadid Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University
]	Usama Ahmed El-Behairy Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Date of Examination: 4 / 10 / 2016

EARLY PRODUCTION OF STRAWBERRY USING SOILLESS CULTURE SYSTEMS

By

ENASS NABIL MOHAMED EISSA

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003
M. Sc. Agric. Sc. (Advanced Agricultural systems for Arid Land), Arid
Land Agricultural Graduate Studies and Research Institute, Ain Shams
University, 2010

Under the supervision of:

Dr. Usama Ahmed El-Behairy

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Zaki El-Sawy Lashine (Late)

Associate Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Sayed Hassan Ahmed

Research Dr. of Vegetable Crops, Department of Soilless Culture, Central Laboratory of Agriculture Climate (CLAC), Agricultural Research Center (ARC)

ABSTRACT

Enass Nabil Mohamed Eissa: Early Production of Strawberry Using Soilless Culture Systems. Unpublished Ph.D. Thesis, Arid Land Agricultural Graduate Studies and Research Institute, Faculty of Agriculture, Ain Shams University, 2016.

This study was divided to two experiments: First experiment was carried out at the experimental site of Arid Land Agricultural graduate studies and Research Institute (ALARI), Faculty of Agriculture, Ain Shams University, Qalyobia Governorate. While, the second ones was carried out at Central Laboratory for Agricultural Climate (CLAC), Agriculture Research Center (ARC), Giza Governorate.

The experiments were carried out during the two successive seasons of 2013/2014 and 2014/2015. Fresh bare root strawberry (*Fragaria x ananassa*) transplants cv. Festival were used in these two experiments.

The aim of this study was to determine the best irrigation scheduling and better strawberry density to get the best early production and quality of strawberry fruits grown in soilless culture systems (Ashape 'NFT system', substrate system 'Bed system).

For first experiment, five irrigation schedules (24 hours (control), ½ /½ hour (Sched 1), ¼ / 1 hour (Sched 2), ¼ / 2 hours (Sched 3), ¼ / 3 hours (Sched 4) and two plant density per square meter (21 plants / m² "PD-1", 32 plants / m² "PD-2") and the combinations among them were tested in this experiment. Second experiment, two irrigation schedules (¼ / 2 hours, ¼ / 3 hours), and two plant density per square meter (12 plants / m² "PD-1", 18 plants / m² "PD-2") and the combinations among them were tested in this experiment.

The EC of the nutrient solution was adjusted at the range of 2.0 – 2.5 m.mhos⁻² and pH was maintained at the range of 5.5-6.0 throughout the experimental time.

The measurements recorded were as follows: vegetative growth measurements include number of leaves, leaves total chlorophyll, leaves

fresh weight, leaves dry weight, root fresh weight and root dry weight. Productivity measurements include number of flowers/plant, number of fruits/plant, % of fruit set, early yield (g/plant), total yield (g/plant), mean fruit weight (g), marketable yield (g/plant), marketable yield (%), un marketable yield (g/plant) and unmarketable yield (%). Quality measurements include total soluble solids (TSS), ascorbic acid (mg/100g) and titratable acidity. Chemicals measurements include macro and micronutrient contents in the leaves. Water measurements include water consumption.

Results indicated that, First experiment: irrigating plants for 15 min every ½ hour (Sched 1) increased plant productivity (mean fruit weight (g), early yield (g/plant) and total yield (g/plant)) and quality (TSS) with significant differences but reduced vitamin C and fruit acidity of strawberry. However using plant density of 32 plant/m² recorded higher number of strawberry leaves, total chlorophyll of leaves, early and total yield, vitamin C and titratable acidity but recorded the lowest water consumption (L/plant). Second experiment: results illustrated that irrigating plants for 15 min every 2 hours (Sched 1) increased vegetative growth parameter (number of strawberry leaves and total chlorophyll of leaves), productivity parameter (early yield (g/plant), total yield (g/plant) and mean fruit weight (g) and quality parameter (titratable acidity). However using 18 plants/m² recorded higher number of strawberry leaves, total chlorophyll of leaves, total yield, vitamin C and lower water consumption (L/plant). Regarding the interaction between irrigation scheduling and plant density.

Key Words:

Soilless culture, NFT, Substrate, Strawberry, Irrigation scheduling, Plant density

ACKNOWLEDGMENT

First of all, I would like to express my deepest thanks to "Allah" who gave me the power, knowledge and helped me to carry out and finish this work. I am particularly grateful to my family, especially my mother, for their help and continuous encouragement during my study period.

I would like to express my sincere gratitude and thanks to **Prof. Dr. Usama Ahmed El-Behairy,** Prof. of Vegetable Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University, for his kind supervision, encouragement, guidance and providing me with valuable help and assistant throughout this thesis period.

I would like to express my deep thanks and true gratitude to late Dr. Zaki El-Sawy Lachen, Associate Prof. of Vegetable Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University, for his supervision.

Also, I wish to extend my deep gratitude and sincere thanks to **Dr. Sayed Hassan Ahmed,** Researcher of Vegetable Crops, Department of Soillesss Culture, Central Laboratory of Agriculture Climate (CLAC), Agricultural Research Center (ARC), for his supervision, constructive guidance encouragement.

I would like to thank all the staff members of Arid Land Agricultural graduate studies and Research Institute (ALARI), Faculty of Agriculture, Ain Shams University for their great help.

Special thanks for all the staff members and colleagues in Central Laboratory for Agricultural Climate (CLAC) specially Soilless Culture Department.

CONTENTS

		Page
	LIST OF TABLES	iv
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
3.	MATERIALS AND METHODS	17
4.	RESULTS AND DISCUSSION	24
4.1	First experiment	24
4.1.1	Effect of irrigation scheduling and plant density on	
	strawberry vegetative growth	24
4.1.1.1	Number of leaves	24
4.1.1.2	Total chlorophyll of leaves (SPAD)	26
4.1.1.3	Leaves fresh weight (g/plant)	28
4.1.1.4	Leaves dry weight (g/plant)	30
4.1.1.5	Root fresh weight (g/plant)	32
4.1.1.6	Root dry weight (g/plant)	34
4.1.2	Effect of irrigation scheduling and plant density on	
	strawberry yield	36
4.1.2.1	Number of flowers/plant	36
4.1.2.2	Number of fruits/plant	38
4.1.2.3	Fruit Set %	40
4.1.2.4	Early yield (g/plant)	42
4.1.2.5	Total yield (g/plant)	44
4.1.2.6	Mean fruit weight	46
4.1.3	Effect of irrigation scheduling and plant density on fruit	
	quality	48
4.1.3.1	Total soluble solids TSS (%)	48
4.1.3.2	Vitamin C content in the fruits (mg/100 g fresh weight)	50
4.1.3.3	Titratable acidity (%)	52
4.1.4	Chemical measurements	54
4.1.4.1	Nitrogen % in leaves	54
4.1.4.2	Phosphorus % in leaves	56

		Page
4.1.4.3	Potassium % in leaves	58
4.1.4.4	Calcium % in leaves	60
4.1.4.5	Magnesium % in leaves	62
4.1.4.6	Iron content (ppm)	64
4.1.4.7	Manganese content (ppm)	66
4.1.4.8	Zinc content (ppm)	68
4.1.4.9	Copper content (ppm)	70
4.1.5	Water measurements	72
4.1.5.1	Water consumption (L/plant)	72
4.2	Second experiment.	75
4.2.1	Effect of irrigation scheduling and plant density on	
	strawberry vegetative growth	75
4.2.1.1	Number of leaves	75
4.2.1.2	Total chlorophyll of leaves (SPAD)	76
4.2.1.3	Leaves fresh weight (g/plant)	78
4.2.1.4	Leaves dry weight (g/plant)	79
4.2.1.5	Root fresh weight (g/plant)	81
4.2.1.6	Root dry weight (g/plant)	82
4.2.2	Effect of irrigation scheduling and plant density on	
	strawberry yield	83
4.2.2.1	Number of flowers / plant	83
4.2.2.2	Number of fruits / plant	85
4.2.2.3	Fruit Set %	86
4.2.2.4	Early yield (g/plant)	87
4.2.2.5	Total yield (g/plant)	89
4.2.2.6	Mean fruit weight	90
4.2.2.7	Marketable yield (g/plant)	92
4.2.2.8	Marketable yield (%)	93
4.2.2.9	Unmarketable yield (g/plant)	95
4.2.2.10	Unmarketable yield (%)	96

4.2.3	Effect of irrigation scheduling and plant density on fruit quality
4.2.3.1	Total soluble solids TSS (%)
4.2.3.2	Vitamin C content in the fruits (mg/100 g fresh weight).
4.2.3.3	Titratable acidity (%)
4.2.4	Chemical measurements
4.2.4.1	Nitrogen % in leaves
4.2.4.2	Phosphorus % in leaves
4.2.4.3	Potassium % in leaves
4.2.4.4	Calcium % in leaves
4.2.4.5	Magnesium % in leaves
4.2.4.6	Iron content (ppm)
4.2.4.7	Manganese content (ppm)
4.2.4.8	Zinc content (ppm)
4.2.4.9	Copper content (ppm)
4.2.5	Water measurements
4.2.5.1	Water consumption (L/plant)
5	SUMMARY AND CONCLUSION
6	REFERENCES
	Arabic Summary

LIST OF TABLES

Table 1	Composition of the used nutrient solution
Table 2	Effect of irrigation scheduling and plant density on number
	of strawberry leaves
Table 3	Effect of irrigation scheduling and plant density on Total
	chlorophyll in strawberry leaves (SPAD)
Table 4	Effect of irrigation scheduling and plant density on leaves
	fresh weight (g/plant)
Table 5	Effect of irrigation scheduling and plant density on leaves
	dry weight (g/plant)
Table 6	Effect of irrigation scheduling and plant density on root
	fresh weight (g/plant)
Table 7	Effect of irrigation scheduling and plant density on root dry
	weight (g/plant)
Table 8	Effect of irrigation scheduling and plant density on number
	of flowers / plant
Table 9	Effect of irrigation scheduling and plant density on number
	of fruits / plant
Table 10	Effect of irrigation scheduling and plant density on fruit
	set %
Table 11	Effect of irrigation scheduling and plant density on early
	yield (g/plant)
Table 12	Effect of irrigation scheduling and plant density on total
	yield (g/plant)
Table 13	Effect of irrigation scheduling and plant density on mean
	fruit weight of strawberry fruit (g)
Table 14	Effect of irrigation scheduling and plant density on total
	soluble solids (TSS) % in strawberry fruits
Table 15	Effect of irrigation scheduling and plant density on
	Vitamin C (mg/100 g fresh weight) in strawberry fruits

		Page
Table 16	Effect of irrigation scheduling and plant density on	53
	strawberry fruit acidity (%)	
Table 17	Effect of irrigation scheduling and plant density on	55
	Nitrogen (%) in strawberry leaves	
Table 18	Effect of irrigation scheduling and plant density on	57
	phosphorus % in strawberry leaves	
Table 19	Effect of irrigation scheduling and plant density on	59
	potassium % in strawberry leaves	
Table 20	Effect of irrigation scheduling and plant density on calcium	61
	% in strawberry leaves	
Table 21	Effect of irrigation scheduling and plant density on	63
	Magnesium % in strawberry leaves	
Table 22	Effect of irrigation scheduling and plant density on iron	65
	content (ppm) in strawberry leaves	
Table 23	Effect of irrigation scheduling and plant density on	67
	manganese content in strawberry leaves	
Table 24	Effect of irrigation scheduling and plant density on zinc	69
	content in strawberry leaves	
Table 25	Effect of irrigation scheduling and plant density on copper	71
	content in strawberry leaves	7.0
Table 26	Effect of irrigation scheduling and plant density on water	73
T 11 05	consumption (L/plant) for strawberry plants	7.6
Table 27	Effect of irrigation scheduling and plant density on number	76
T-11- 20	of strawberry leaves.	77
Table 28	Effect of irrigation scheduling and plant density on Total	77
T-11- 20	chlorophyll in strawberry leaves (SPAD)	70
Table 29	Effect of irrigation scheduling and plant density on	79
Table 20	strawberry leaves fresh weight (g)	80
Table 30	Effect of irrigation scheduling and plant density on	οU
	strawberry leaves dry weight (g)	

		Page
Table 31	Effect of irrigation scheduling and plant density on	82
	strawberry root fresh weight (g)	
Table 32	Effect of irrigation scheduling and plant density on	83
	strawberry root dry weight (g)	
Table 33	Effect of irrigation scheduling and plant density on number	84
	of strawberry flowers/plant	
Table 34	Effect of irrigation scheduling and plant density on number	85
	of strawberry fruits/plant	
Table 35	Effect of irrigation scheduling and plant density on	87
	strawberry fruit set %	
Table 36	Effect of irrigation scheduling and plant density on	88
	strawberry early yield (g/plant)	
Table 37	Effect of irrigation scheduling and plant density on	90
	strawberry total yield (g/plant)	
Table 38	Effect of irrigation scheduling and plant density on	91
	strawberry mean fruit weight (g)	
Table 39	Effect of irrigation scheduling and plant density on	93
	strawberry marketable yield (g/plant)	
Table 40	Effect of irrigation scheduling and plant density on	94
	strawberry marketable yield (%)	
Table 41	Effect of irrigation scheduling and plant density on	96
	strawberry unmarketable yield (g/plant)	
Table 42	Effect of irrigation scheduling and plant density on	97
	strawberry unmarketable yield (%)	
Table 43	Effect of irrigation scheduling and plant density on total	99
	soluble solids (TSS) % in strawberry fruits	
Table 44	Effect of irrigation scheduling and plant density on	100
	Vitamin C (mg/100 g fresh weight) in strawberry fruits	
Table 45	Effect of irrigation scheduling and plant density on	102
	strawberry fruit acidity (%)	

		Page
Table 46	Effect of irrigation scheduling and plant density on	103
	nitrogen % in strawberry leaves	
Table 47	Effect of irrigation scheduling and plant density on	105
	Phosphorus %	
Table 48	Effect of irrigation scheduling and plant density on	106
	Potassium %	
Table 49	Effect of irrigation scheduling and plant density on calcium	107
	% in strawberry leaves	
Table 50	Effect of irrigation scheduling and plant density on	108
	magnesium % in strawberry leaves	
Table 51	Effect of irrigation scheduling and plant density on iron	110
	content (ppm) in strawberry leaves	
Table 52	Effect of irrigation scheduling and plant density on	111
	manganese content (ppm) in strawberry leaves	
Table 53	Effect of irrigation scheduling and plant density on zinc	113
	content (ppm) in strawberry leaves	
Table 45	Effect of irrigation scheduling and plant density on copper	114
	% in the strawberry leaves	
Table 55	Effect of irrigation scheduling and plant density on water	115
	consumption (L/plant)	

1. INTRODUCTION

Strawberry (Fragaria × ananassa) is a perennial, low-creeping, stoloniferous herb belonging to the family Rosaceae. It is basically a temperate fruit crop, widely distributed due to its genotypic diversity, high heterozygous nature and broad range of environmental adaptations (Sharma and Sharma, 2004). It is perishable crop which is exceedingly in demand for its taste, profitability, high yield and good quality. It has a unique, highly desirable taste and flavor and is one of the most popular fruits around the world (Sturm et al., 2003). It is a rich source of vitamins and minerals with delicate flavors (Sharma, 2002). It also contains a higher percentage of phenolic and flavonoids compounds (Hakkinen and Torronen, 2000).

Strawberry is one of the most important crops for export in Egypt, and is produced in open fields, with heavy harvesting occurring mostly in the winter months of the year. This allows Egyptians strawberry growers to take advantage of the high fruit prices when other states do not have production due to cold weather. In spite of this competitive advantage, increasing competition from international markets has prompted growers to seek alternative production systems that could enhance crop yield and quality, as well as fruit earliness. Soilless culture may be an alternative to fulfill those goals.

Soilless plant production has been practiced for several millennia and it permits crops to be grown where no suitable soil exists or where the soil is contaminated in some manner or other. Maximum yields are possible and this makes the system economically feasible in high-density and expensive land areas. According to **Takeda** (2000), future growth of soilless culture will depend on the development of production systems and substrates that are competitive in costs and returns with conventional agriculture.

Poor timing or insufficient irrigation could result in crop stress and reduced yields, whereas excessive watering may diminish yield and quality and increase the risk of nutrient leaching (Simonne and Dukes, 2009). Kruger et al. (1999) and Kirnak et al. (2003) showed a positive influence of proper irrigation on strawberry yield, fruit size and quality in comparison to non-irrigated plants. Another report found that there is a significant effect of irrigation on strawberry flavor (Hoberg et al., 2002).

Planting density plays an important role in achieving high productivity per unit area. High planting density resulted in highest yield, largest berries, and the best quality fruit (**Petersen**, **1998**). In strawberry, marketable yields were higher at narrower spacing than wider spacing (**Legard** *et al.*, **2000**). Growth and yield per plant were increased by increasing plant spacing from 20 to 30 cm and also resulted in a greater leaf area and leaf area index, but the highest harvest index and yield per square meter were obtained at the closest spacing (**De-Camacaro** *et al.*, **2004**). Planting density also greatly influence production and fruit quality of strawberry plants that are grown from cuttings (**Jansen**, **1997**). Improper selection of plant population density limits the productivity and acreage of strawberry.

This study was conducted to investigate the impact of irrigation scheduling and plant densities on yield and quality of strawberry fruits in strawberry plants grown under soilless culture systems (A-shape 'NFT system', substrate system 'Bed system').