

Ain-Shams University
Faculty of Science, Geology Department

HYDROLOGIC ASSESSMENT OF WADI SUDR AND VICINITIES, SOUTH SINAI, EGYPT

A Thesis Submitted To

The Geology Department
Faculty of Science, Ain Shams University
For the degree of Ph. D. in Science Geology (Hydrogeology)

 $\mathcal{B}y$

Nouria El Hadi .A. Aboshaala

B. Sc. (In Geology, 1997) MSc. (In Hydrogeology, 2007)

Supervised By

Prof. Dr. Ezzat Ali Korany

Emeritus Professor of Hydrogeology Ain Shams University Faculty of Science Geology Department

Dr. Hassan Kamel Fathi Garamoon

Assistant Professor-Hydrogeology Ain Shams University Faculty of Science Geology Department

Prof. Dr. Salah Mohamed Abdel Mogheeth

Emeritus Professor of Hydrology Desert Research Center Hydrology Department

Dr. Nahla Abdel Moneim Morad

Researcher of Hydrology Desert Research Center Hydrology Department

APPROVAL SHEET

THESIS Title: "HYDROLOGIC ASSESSMENT OF WADI SUDR AND VICINITIES, SOUTH SINAI, EGYPT"

By: Nuria Al Hady Abo Shaala

This Thesis for Ph. D. in Science in Geology (Hydrogeology) has been approved by:

Prof. Dr.: Hossam Hamdi Elewa
professor and head of engineering applications and Water National Authority for Remote Sensing Division of Sensing and Space Sciences.

Prof. Dr.: Gamal Abd Allah
Professor of Hydrogeology and Secretary
General of the Water Resources Research Institute

Prof. Dr.: Ezzat Ali Korany
Emeritus Professor of Hydrogeology,
Ain Shams University, Faculty of Science, Geology Department

Date of Examination: 1 / 12 / 2016

<u>ACKNOWLEDGEMENT</u>

All gratitude is due to Almighty *Allah* who guided and aided me in presenting this thesis in suitable form.

I wish to express my thanks to Emeritus *Prof. Dr. Ezzat Ali Korany*, Geology Department, Faculty of Science, Ain Shams University, for his direct supervision, encouragement, guidance, valuable advice, useful discussion and critical reading and revising of the manuscript.

I wish to express my deep gratitude and appreciation to Emeritus *Prof. Dr. Salah Mohamed Abdel Mogheeth* Hydrology Department, Desert Research Center, for suggesting this point of research, supervising and planning the work, constructive orientation, continuous encouragement and generous assistance during all the stages of the study.

My deep gratitude and cordial thanks are due to *Dr. Hassan Garamoon*, Geology Department, Faculty of Science, Ain Shams University, for his continuous advice, close reading and revising the thesis.

My deep gratitude to *Dr. Nahla Abdel Moneim Morad*, Hydrology Department, Desert Research Center, for her sincere helping, continuous encouragement, fruitful discussions and great effort in the field work.

My sincere thanks are due to all colleges in the Geology Department of Ain Shams University, especially *Prof. Dr. Abd AL-Mohsen Morsi*, Head of the Geology Department, Ain Shams University for their encouragement and offering unlimited facilities and *Dr. Ahmad Gad*, for his kind assistance during the proceeding of this work.

Last but not least, I would like to express my deep thanks to my children, Saif, Mohamed, Abd El Rahman and Aysha and to my husband Fathi Abo khdir, and to my family in Libya for their patient and unlimited support.

Nuria Al Hady Abo Shaala

ABSTRACT

Wadi Sudr and vicinities includes three main Wadis in South Sinai running from northeast to southwest namely from north to south; Wadi Lahata (260 km²), Wadi Sudr (743 km²) and Wadi Wardan (1385 km²). The study area is bounded by Longitudes 32°37'00" and 33°24'6"E and Latitudes 29°20'53" and 29°52'59"N. It is bounded in the east by Wadi El-Ariesh, in the west by the Gulf of Suez, in the north by Ayun Mousa area and by Wadi Gharandal in the south. The study area depends on groundwater as a main source for agricultural and other purposes.

The surface slopes generally towards the Suez Gulf. It is surrounded at the upstream part by a number of mountains representing the main watershed area receiving storms causing runoff. Its elevation ranges from 600m above mean sea level (in Gebel El Raha) to 916m above mean sea level (in Gebel Dahak). The sedimentary sequences are built of rock units belonging to geologic ages range from Upper Cretaceous to Quaternary. The study area is greatly influenced by several structural trends W-S, E-W, NW-SE and NNE-SSW comprising normal and reverse faults dipping 75°-85° E.

GIS techniques (by using ArcHydro Tool in ArcGIS-9.3 software) are used in the preset study to trace the basins boundaries, water divides, the drainage patterns and the morphometric parameters. The morphometric analysis and hazard degree calculations show that Wadi Wardan has highly hazard, while Wadi Sudr and Wadi Lahata are of moderately hazard. Sudr and Wardan basins are selected for simulation to explain the relationship between rainfall and runoff using **HEC-HMS** (**Hydrologic Engineering Center-Hydrologic Modeling System**). The synthetic hydrographs are constructed for both Sudr and Wardan basins,

where the runoff volume of Sudr basin (743 km²) is estimated by 2243.3x10³ Cubic meters, while it reaches 6260x10³ Cubic meters for Wardan basin (1385km²). The maximum flow peak for Wadi Sudr basin reaches 95.3m³/s with total excess rainfall is 3.97mm. While for Wardan basin the maximum flow peak reaches 251.1m³/s and the total excess rainfall is 5.9mm.

Groundwater of the study area are available from three main aquifers belonging to Upper Cretaceous (fractured limestone), Miocene (sandstone and evaporites) and Quaternary (Wadi fill and deltaic deposits). They are mainly recharged by direct rainfall, infiltration from runoff water coming from the upstream eastern areas and the upward leakage from the deeper aquifers.

The main factors controlling the chemical characteristics, as well as its hydrogeochemical evolution are interpreted. 57 groundwater samples were collected in June 2014 for chemical analysis to determine the major and minor components.

Groundwater salinity changes widely from 1170 ppm to 14000 ppm, with an increase towards the west. The distribution of groundwater salinity is related to the well depth, distance from the shore line, absolute water level, depth of wells below the sea level and pumping rates. The higher rate of recharge in Wadi Wardan leads to less groundwater salinity, while in Wadi Lahata, where the rate of recharge is very low causing higher groundwater salinity. The temporal variation in salinity in the study area indicates an increase in the groundwater salinity -during the last 15 years- from 2000 ppm to 8500 ppm. It is attributed to over pumping and shortage of recharge by meteoric water. The geochemical classifications indicate that the chemical evolution of the groundwater from upstream to downstream areas is responsible for the change in the

chemical characteristics of each aquifer. Sodium chloride (NaCl) and sodium sulfate (Na₂SO₄) are the dominant water types in the study area indicating the chemical impact of the marine and continental deposits, respectively. Most of the groundwater samples in the wells influenced by sea water intrusion. They are not recommended for irrigation under normal conditions. However, it is probably suitable for the salt tolerant crops under high permeable soils and proper irrigation management.

Isotopes analyses for ¹⁸O and ²H contents are carried out for selected nine groundwater samples. The groundwater samples are depleted in ²H and ¹⁸O to the Standard Mean Ocean Water (SMOW). They displayed an isotopic signature close to that of meteoric water with d-excess values (5.7 - 20.08 ‰) indicating present-day precipitation over the region. Moreover, the areal distribution of oxygen-18 and deuterium in the studied samples indicate that the central part of delta of Wadi Sudr has the highest depletion and surrounded by relative enriched values all the way around and toward the Gulf coast. This may reflect the evaporation effect on shallow water horizon.

TABLE OF CONTENTS

APPROVAL SHEET	I -
ACKNOWLEDGEMENT	II -
ABSTRACT	III -
TABLE OF CONTENTS	VI -
LIST OF FIGURES	XII -
LIST OF TABLES	XX -
INTRODUCTION	1 -
1. General Statement	1 -
2. Aim and objectives	
3. Review of Previous Works	
4. Materials, methods and study plan	
a) Materials and methods	
Data Review and Collection	
Geologic and Topographic Maps and Digital Elevat	
Model (DEM)	
Available software	
b) Study plan	
Field Work	
Laboratory Work	
5. Thesis structure	
CHAPTER I	
GEOLOGIC AND GEOMORPHOLOGIC SETTINGS, V SUDR AND VICINITIES	<u>WADI</u>
I.1 Geologic Setting	16
1. Upper Cretaceous rocks	
1. Opper Cretaceous rocks	
1.b Turonian	
1.c Santonian-Coniacian	
1.d Lower Senonian	
1.e Maestrichtian	
2. Tertiary rocks	
2.a Paleocene Rocks	
2.0 I 0.000110 1.00110	20

2.	b Eocene Rocks	20 -
2.	c Miocene Rocks	21 -
2.	d Pliocene Rocks	23 -
3.	Quaternary Deposits	23 -
I.2 G	eological Structure	24 -
I.3 G	eomorphologic Setting	28 -
1.	Regional Geomorphology	28 -
2.	Local Geomorphology and landforms	32 -
3.	Morphometric analysis of catchment area	
A. L	inear aspects of the drainage network	36 -
(1)	Stream Order (u) and Stream Number (Nu)	36 -
(2)	Stream Length (Lu)	39 -
(3)	Bifurcation Ratio (Rb)	41 -
(4)	Weighted Mean Bifurcation Ratio (Rbwm)	43 -
B. A	real Aspects of the Drainage Basins	44 -
(1)	Basin Length (Lb)	44 -
(2)	Valley length (Lv)	45 -
(3)	Basin width (W)	45 -
(4)	Basin Area (A)	45 -
(5)	Basin Perimeter (P)	46 -
(6)	Texture Ratio (Tr)	46 -
(7)	Elongation ratio (Re)	47 -
(8)	Circularity ratio (Rc)	48 -
(9)	Form Factor Ratio (Fr)	48 -
(10)	Sinuosity Index (Si)	49 -
C. D	rainage Texture Analysis	50 -
(1)	Stream Frequency (Fs)	50 -
(2)	Drainage Density (D)	51 -
(3)	Length of Overland Flow (Lo)	52 -
(4)	Drainage Pattern (Dp)	52 -
D. R	elief Aspects	55 -
(1)	Basin relief (R)	55 -
(2)	Relief ratio (R _f)	55 -
(3)	Relative relief (Ri)	56 -
(4)	Ruggedness Number (Rn)	56 -
(5)	Slope Index (Si)	
E. D	etermination of Relative Flood Hazard Degrees	58 -

CHAPTER II

HYDROLOGICAL CONDITIONS, WADI SUDR AND VICINI	TIES
1. General outline	- 61 -
2. Climatic Conditions	- 62 -
2.a Air temperature	- 62 -
2.b Relative Humidity	
2.c Wind Velocity	- 65 -
2.d Rainfall Analysis	- 66 -
Annually and monthly distribution of Rainfall	- 67 -
Seasonal rainfall distribution	
The maximum rainfall in one day	
Probability and return period analysis	- 74 -
2.e Evaporation and Evapotranspiration	
2.f Aridity Index	
2.g Moistur Balance	
3. Storm Characteristics and Analysis	
4. Application of HEC-HMS software	
Model Input Data	
i) Description of Catchment Wadis	
ii) Rainfall data	
iii) Losses Determinations	
iv) Runoff Transformations	
v) Routing Method	
HEC-HMS Model Application	
5. Discussion of Results	112 -
CHAPTER III	
HYDROGEOLOGICAL CONDITIONS, WADI SUDR AND VICINITIES	
General outline	116 -
1. Aquifers in Wadi Lahata hydrographic basin	
Quaternary Alluvial Aquifer	
2. Aquifers in Wadi Sudr hydrographic basin	
i. Upper Cretaceous Limestone Aquifer (Senonian)	
ii. Quaternary Alluvial Aquifer	
a. Quaternary Wadi fill Deposits Aquifer	
b. Quaternary Deltaic Deposits Aquifer	129 -

3. Aquif	ers in Wadi Wardan hydrographic basin 137	-
i. U	pper Cretaceous Limestone aquifer (Senonian) 137	
	he Sandstone and Evaporites Aquifers (Lower Miocene) - 139	
	Quaternary Alluvial Aquifer 140	
	s of groundwater level changes by time in Wadi Sudr 143	
	<u>CHAPTER IV</u>	
	ROGEOCHEMICAL CHARACTERISTICS OF	_
<u>GROUNDW</u>	ATER AND EVALUATION FOR IRRIGATION USES	<u>}</u>
General ou	tline 148	_
Groundwat	er Chemistry of the studied basins 154	-
1. Hy	ydrogeochemical characteristics of groundwater in Wadi	
-	hata 155	-
1.1	Salinity content 155	-
1.2	Distribution of the selected major anions (Cl	
	and SO ₄) 157	-
1.3	The relationship between TDS and major anions	
	(Cl ⁻ and SO ₄ ⁻) 158	
1.4	Changes of groundwater salinity with time 160	-
1.5	Ion dominance and water types 161	-
1.6	The hypothetical salt assemblages 161	-
1.7	The hydrochemical coefficients (ion ratios) 162	
	Hydrogeochemical characteristics of groundwater in Wadi	
	Sudr 164	
	Salinity content 165	-
2.2	Distribution of the selected major anions (Cl	
	and SO4) 168	
2.3	Changes of groundwater salinity with time 169	-
2.4	The relationships between TDS and major anions	
	(Cl ⁻ and SO4)	
2.5	Ion dominance and water types 173	
2.6	The hypothetical salt assemblages 175	
2.7	The hydrochemical coefficients (ion ratios) 177	-
-	ydrogeochemical characteristics of groundwater in Wadi	
	ardan 180	
3.1	Salinity content - 180	-
3.2	Distribution of the selected major anions (Cl	
	and SO ₄)	-

3.3	The relationships between TDS and major anior	ıs
	(Cl ⁻ and SO _.)	184 -
3.4	Ion dominance and water types	186 -
3.5	The hypothetical salt assemblages	188 -
3.6	The hydrochemical coefficients (ion ratios)	190 -
Hydroge	eochemical Classification	
a)	Trilinear diagram or Piper diagram	194 -
b)	Schoeller's diagram	
c)	Chadha Diagram	
Trace El	lements distributions	
Lateral	change of water quality (Hydrochemical profiles)	206 -
a)	Lahata profile (A-A ⁻)	
b)	Sudr profile (B-B ⁻)	
c)	Wardan profile (C-C ⁻)	
d)	South-North profile (D-D ⁻)	
Evaluati	on of groundwater quality for irrigation uses	
a)	Total dissolved solids (TDS)	
b)	Sodium Adsorption Ratio (SAR)	
c)	Toxic Metal Content	
Stable Is	sotopes analysis	219 -
SUMMAI	RY, CONCLUSION AND RECOMMENDATIONS	228 -
	mmary	
	nclusion	
3. Red	commendations	246 -
REFERE	NCES	248 -
A PPENDI	ICES	- 267 -

LIST OF FIGURES

Fig. (1): Location map of the study area showing the distribution of water
points in the studied Wadies 3 -
Fig. (2): Geological map of the studied area (After the Geological Survey
of Egypt (1994) Scale 1:250000) 17 -
Fig. (3): Geological Cross section A-B of Wadi Sudr and Wadi Lahata
(After the Geological Survey of Egypt (1994) Scale 1:250000 For
legend, see table 1) 17 -
Fig. (4): The tectonic map of Sinai (After Neev, 1975) 26 -
Fig. (5): Structural subdivisions of Sinai (After Shata, 1956) showing the
location of the study area 27 -
Fig. (6): Rose diagram interpreted from surface geology showing that, the
study area is characterized by one main structural trend is in
the NW-SE direction related to the Gulf of Suez trend and
minor trends in the E-W and NE-SW directions (After, Selim,
2012)28 -
Fig. (7): Regional geomorphologic map of South Sinai, (After
JICA, 1999) 31 -
Fig. (8): Digital Elevation Model (DEM) showing the main
geomorphologic units (based on ASTER DEM with 30m
resolution) 34 -
Fig. (9): Drainage Map of Lahata basin (by using ArcHydro Tool) 37 -
Fig. (10): Drainage Map of Sudr basin(by using ArcHydro Tool) 38 -
Fig. (11): Drainage Map of Wardan basin (by using ArcHydro Tool)
38 -
Fig. (12): The relationship between stream numbers (Nu) and stream
orders (U) in the study area 39 -

Fig.	(13):	The relationship between the total stream length (Lu) and
	str	eam orders (U) in the study area 40 -
Fig.	(14):	The relationship between the total stream number (Nu) and
	str	eam orders (U) for each Wadi
Fig.	(15):	The dendritic drainage patterns in the studied Wadis networks
	of	the study area. — 54 -
Fig.	(16):	Rose-diagram showing surface wind directions, (a) at Ras Sudr
	sta	ation, (b) at Abu Rudeis station (Atlas of Sinai Peninsula after
	El	Othman, 2011, in Arabic)
Fig.	(17):	Mean monthly rainfall at Ras Sudr, Nekhel, Abu Rudeis and
	Su	ez stations 69 -
Fig.	(18):	Isohyetal contour map for annual rainfall of the study
	are	ea 69 -
Fig.	(19):	The season's rainfall ratio from annual average for studied
	sta	tions 71 -
Fig.	(20):	The highest amount of rainfall in the study area that recorded in
	on	e day 74 -
Fig.	(21):	Monthly mean of daily evaporation in the study area
	(m	ım/day)
Fig.	(22):	Potential evapotranspiration (mm/day) - Precipitation (mm)
	rel	ationship Nekhel Station 85 -
Fig.	(23):	Potential evapotranspiration (mm/day) - Precipitation (mm)
	rel	ationship Suez Station 85 -
Fig.	(24):	Potential evapotranspiration (mm/day) - Precipitation (mm)
	rel	ationship Ras Sudr Station 86 -
Fig.	(25):	Potential pvapotranspiration (mm/day) - Precipitation (mm)
	rel	ationship Abu Rudeis Station 86 -

Fig. (26): Isohyetal map of 17-18 th January (2010) storm over Sinai
(NASA data obtined from Cools et al., 2012) 88 -
Fig. (27): photographs showing flash flood damages in Abu Swira village
and Ras Sudr City (January, 2010) 89 -
Fig. (28): Depth-time curve 92 -
Fig. (29): Accumulation Depth with time relationship (mass curve)
92 -
Fig. (30): Intensity-Duration Curve93 -
Fig. (31): Selected hydrographic basins in the study area for application
of hydrologic model (HEC-HMS) 94 -
Fig. (32): Location map of the selected sites for infiltration test in Wadi
Sudr (Modified from Morad, 2000 and El-Sayed, 2006). This
figure indicates that the infiltration rates increase toward the delta
of the Wadi were the soil is asndy 99 -
Fig. (33): Hyetograph of Sudr and Wardan basins based on the SCS
method 101 -
Fig. (34): Rock classification and curve number value in Sinai Peninsula
(After El-Sayed, 2012, in Arabic) 107 -
Fig. (35): Typical Hydrograph showing the different parameters
(After Ponce, 1989) 109 -
Fig. (36): Computed runoff hydrograph for measured storm of Sudr
catchment 114 -
Fig. (37): Computed runoff hydrograph for measured storm of Wardan
catchment 114 -
Fig. (38): Simulated hydrograph for measured storm and excess rainfall
of Sudr catchment 115 -

Fig. (39): Simulated hydrograph for measured storm and excess rainfall
for Somar sub-basin in Wardan catchment 115 -
Fig. (40): Well location map with the water bearing rock units of the
study area, South Sinai Egypt 118 -
Fig. (41): Hydrogeological map of the Study area, South Sinai, Egypt
(JICA, 1999) 121 -
Fig. (42): Photograph showing a vertical section of the deltaic deposits in
the delta of Wadi Lahata. (11m thick) consist mainly of ill-sorted
sands and gravels with clay and sandstone interbeds 122 -
Fig. (43): Depth to water contour map, Quaternary alluvial aquifer, delta
of Wadi Lahata, where the depth to groundwater increases toward
the east 123 -
Fig. (44): Water table contour map, Quaternary alluvial aquifer, delta of
Wadi Lahata, where the groundwater flows due south and
southeast 123 -
Fig. (45): Photograph showing, Sudr Spring at the upstream of Wadi
Sudr, where the water flows naturally from the Upper Cretaceous
aquifer 125 -
Fig. (46): Photograph showing, the alluvial loess deposition in the main
channel of Wadi Sudr, where it is composed of calcareous gravel
and sand (more than 5m thick) 127 -
Fig. (47): Photograph showing Abu Ragem spring at the upper reaches of
Wadi Sudr, where the water flow naturally within the Alluvium
deposits
Fig. (48): Photographs showing Umm Garef well in the midstream of
Wadi Sudr. It is issued from the alluvium deposits (wadi fill
aguifer) 128 -