

A STUDY ON THERMAL AND ELECTRICAL STRESSES OF POWER TRANSFORMERS

By

Eng. Rehab Ahmed Saad Elshourbagy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electrical Power & Machines Engineering

A STUDY ON THERMAL AND ELECTRICAL STRESSES OF POWER TRANSFORMERS

By Eng. Rehab Ahmed Saad Elshourbagy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electrical Power & Machines Engineering

Under the Supervision of

Prof. Dr. Osama El-sayed Gouda

Electrical power and Machine Dept.
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

A STUDY ON THERMAL AND ELECTRICAL STRESSES OF POWER TRANSFORMERS

By Eng. Rehab Ahmed Saad Elshorbagy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Electrical Power & Machines Engineering

Approved by the
Examining Committee
Prof. Dr. Osama El-sayed Gouda, Thesis Main Advisor
Prof. Dr. Ahdab Mohamed Kamel El-morshedy, Internal Examiner
Dr. Adel Ahmed El-Faraskoury, External Examiner
Sector Head of Laboratories & Researches and Tests

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** REHAB AHMED SAAD ELSHORBAGY

Date of Birth: 18 / 01 / 1985 **Nationality:** Egyptian

E-mail: rehabelshourbagy@gmail.com

Phone: 01224005251

Address: 163 Gharb Arabila, Fifth settlement, New Cairo

Registration Date: 01/10/2011 **Awarding Date:** / /2017

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Osama El-sayed Gouda

Examiners:

Dr. Adel Ahmed El-Faraskoury (External examiner) Sector Head of Laboratories& Researches and Tests Prof. Dr. Ahdab Kamel El-morshedy (Internal examiner) Prof. Dr. Osama El-sayed Gouda (Thesis main advisor)

Title of Thesis:

A Study on Thermal and Electrical Stresses of Power Transformers

Key Words:

Top oil temperature; Hotspot temperature; Transient over voltage; Transformer Life time

Summary:

Power transformers are intended to withstand system abnormalities such as over voltages and overloads. Diagnostics and monitoring of transformer are the effective methods to prevent failures and ensure the network reliability. The solid insulation of power transformers is a function of time which depends on the temperature, moisture amount, acids and oxygen in the insulation system. This thesis focuses on thermal and electrical stresses that affect the insulation of power transformer and hence cause aging of power transformer. IEEE loading guide and IEC 60354 equations were modeled and thermal model is studied to estimate transformer top oil and hotspot temperature. Transient overvoltage is studied also to show how the power transformer can be exposed to electrical stresses causing insulation overheating. Remaining service life of the transformer is estimated through degree of polymerization of paper (DP) insulation.

Acknowledgments

First and foremost thanks to Allah, the most beneficial and merciful. You have blessed me to complete this work successfully.

I would like to express my sincere gratitude to my advisor Prof. Dr. Osama El-Sayed Gouda for his continuous support, his patience and motivation throughout the course of this work. His guidance helped me in all the time of research and writing of this thesis. I couldn't have imagined having a better advisor and mentor for my thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof, for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives.

I am using this opportunity to thank my family: my parents and to my sister for continuous support .They always incented me to strive towards my goals

I am thankful to my friends for their continued support and to all persons who made all things possible.

Thank you very much, everyone!

Table of Contents

ACK	NOWL	EDGMENTS	I
TABl	LE OF (CONTENTS	II
LIST	OF TA	BLES	V
LIST	OF FIG	GURES	VII
NOM	IENCLA	ATURE	XI
ABST	TRACT		XIII
СНА	PTER 1	: INTRODUCTION	1
1.1		Overview	1
1.2		The Objective and Scope of This Thesis	
1.3		Organization of Thesis	3
СНА	PTER 2	: TRANSFORMER INSULATION LIFE	5
2.1		Introduction	5
2.2		Aging Process of Transformer Insulation System	
2.3		Power Transformer Failures and Problems	6
2.4		Transformer Life Managements	7
2.5		Thermal Design of Transformer	7
2.5.1		Cooling systems in transformers	8
	2.5.1.1	Oil immersed, self –cooled	9
	2.5.1.2	Oil immersed, water –cooled	9
	2.5.1.3	- · · · · · · · · · · · · · · · · · · ·	
	2.5.1.4	,	
2.5.2		Cores, leads and internal structure steel work	
2.5.3		Cooling of the oil	
2.6		Thermal Aging of Power Transformer	14
2.6.1		Loading of power transformer	
2.6.2		Types of loading and their interrelationship.	
	2.6.2.1	T	15
	2.6.2.2		
	2.6.2.3	\mathcal{E}	
	2.6.2.4	\mathcal{E} \mathcal{I}	
2.6.3		Risk considerations.	
2.6.4		Transformer loading guides	
2.7		Determination of hotspot factor H	
2.8		Determination of winding hotspot temperature by direct method	20
CHA	PTER 3	: THERMAL MODELING OF POWER TRANSFORMER	21
3.1		Introduction	21
3.2		Transformer Loading Guides	
3.2.1		IEEE top oil temperature rise model	21
3.2.2		IEEE winding hotspot temperature rise model	22

3.2.3		The simulation model	23
3.2.4		Example calculations for 125 MVA transformer	
3.3		An Improved Top Oil Rise Temperature Model	28
3.4		Thermal Model Based on Electrical Thermal Equivalent Circuit	31
	3.4.1	Top oil thermal model	
	3.4.2	Winding hotspot thermal model	
	3.4.3	The simulation results	35
3.5		Transformer Dynamic Ratings	41
	3.5.1	Normal life expectancy loading	
	3.5.2	Long time emergency loading	
	3.5.3	Short time emergency loading	43
3.6		Dynamic Thermal Modeling in Case of Non-Sinusoidal Load	
Curre	nts		45
	3.6.1	Estimating transformer temperature rise in case of harmonic l	
curren	nts		
	3.6.2	Transformer losses under harmonics	
	3.6.3	Transformer loading guides in the presence of harmonics	
	3.6.4	The simulations and results	46
CHA	PTER 4	:TRANSIENT OVERVOLTAGE OF POWER TRANSFORMER	R 51
4.1		Introduction	
4.2		Impact of High Voltage and High Frequency Waves	
4.3		Sources of Oscillating Voltage in Electrical Networks	
4.3.1	4011	Lightning over voltage	
	4.3.1.1	\mathcal{E}	
	4.3.1.2	\mathcal{E}	
4.4		Voltage Impulse Disturbances	
4.5		Modeling of Lightning on Power Transformer	
4.6		The Simulations and Results	
4.6.1		Lightning wave simulation without surge arrestor	
	4.6.1.1	\mathcal{E}	
	4.6.1.2	\mathcal{E}	
	4.6.1.3		
4.6.2		Lightning Wave Simulation with Surge Arrestor	
	4.6.2.1	ω	
	4.6.2.2		
transf	ormer		
	4.6.2.3	8 . 8	
	ormer		
4.7		Effect of Placement of Surge Arrestor	
4.8		Effect of Steepness of Lightning Wave	
4.8.1		Simulation of lightning wave 0.5/60 µs, 50 kA without surge arresto	r68
4.8.2		Simulation of lightning wave 0.5/60 µs, 50 kA with surge arrestor	
4.8.3		Lightning wave 8/20 μs,50 kA without surge arrestor	.70
4.8.4		Lightning wave 8/20 µs,50 kA with surge arrestor	.71
4.9		Modeling of Switching surges on power transformer	
4.9.1		Simulation standard switching wave 250/2500 µs, 10 kA without sur	
arresto	or		73

REFERENCES		104
CHAPTE	CR 6 : CONCLUTION	102
5.7	Modeling Relation between Furan Compounds and DP	97
Polymeriz	ation	
5.6	Service Life of Power Transformers and Relation with Degree of	of
5.5	Predicting Transformer Loss of Life in Case of Harmonics	
5.4.3	Short time emergency rating	
5.4.2	Long time emergency rating	
5.4.1	Normal and emergency load profile	
5.4	Results and Discussions	
5.3	Percentage Loss of Life	
5.2	Aging Equations	
5.1	Ageing of Transformer Insulation	87
CHAPTE	R 5: ESTIMATION OF LIFE TIME OF POWER TRANSFORM	MER. 87
4.10	Margin of Protection.	83
4.9.5	Switching Surges in Transformer Caused by Tripping of Circuit	
4.9.4	Energization transformer with surge arrestor	
4.9.3	Energization transformer without surge arrestor	
arrestor	Simulation standard switching wave 250/2500 µs, 10 kM with si	•
4.9.2	Simulation standard switching wave 250/2500 µs, 10 kA with s	urge

List of Tables

Table 2.1	Causes of power transformer failures	6
Table 2.2	Four types of power transformer cooling.	11
Table 2.3	Temperature and load limitation.	17
Table 2.4	Maximum temperature design limit with risk considerations	17
Table 2.5	Exponents used in temperature calculation equations	20
Table 3.1	125 MVA, 220/66/11 kV, thermal model parameters and losses	25
Table 3.2	Similarity between thermal and electric quantities	31
Table 3.3	Harmonic load current.	47
Table 3.4	Losses under harmonic current.	47
Table 4.1	Parameters of the Transmission Line	55
Table 4.2	Technical data of power transformer.	55
Table 4.3	Technical data of 420 kV surge arrestor.	.61
Table 4.4	Technical data of 145 kV surge arrestor.	.62
Table 4.5	Variation of terminal voltage with change of distance of surge arrestor	67
Table 4.6	Transformer Winding Margin of Protection Summary	86
Table 5.1	Percentage Loss of life	94
Table 5.2	The calculated degree of polymerization for various models	99

List of Figures

Fig 2.1	Aging profile of a mineral oil/Kraft paper insulation system	6
Fig 2.2	Oil flow diagram in ONAN(a),ONAF(B),ONAF(d) and ODAF(d) types	10
Fig 2.3	Arrangements of cooling radiators.	13
Fig 2.4	Transformer thermal diagram according to IEC 60354.	18
Fig 3.1	Simplified diagram of the Thermal dynamic model	23
Fig 3.2	Block diagram of top oil rise model.	24
Fig 3.3	Transformer input load cycle	25
Fig 3.4	IEEE top oil model Simulink.	26
Fig 3.5	IEEE hotspot model Simulink.	27
Fig 3.6	Calculated hotspot temperature for load cycle given in figure (3.3)	28
Fig 3.7	An improved top oil temperature model Simulink	29
Fig 3.8	Daily ambient temperature	30
Fig 3.9	Calculated top oil temperature for load cycle given in figure (3.3)	30
Fig 3.10	Calculated hotspot temperature for load cycle given in figure (3.3)	31
Fig 3.11	Equivalent thermal circuit.	.32
Fig 3.12	Equivalent thermal circuit.	34
Fig 3.13	Simplified transformer thermal model	35
Fig 3.14	Block diagram of hotspot model.	.35
Fig 3.15	Top oil thermal model Simulink.	36
Fig 3.16	Hotspot thermal model Simulink.	37
Fig 3.17	Calculated top oil temperature.	38
Fig 3.18	Calculated hotspot temperature.	38
Fig 3.19	Calculated hotspot temperature for various model	39

Fig 3.20	Transformer actual load cycle	.40
Fig 3.21	Hotspot temperature for 125 MVA transformer	40
Fig 3.22	Transformer normal loading over 24-hrs period	.41
Fig 3.23	Top oil, hotspot and ambient temperature at normal transformer loading	.42
Fig 3.24	Transformer Long Time Emergency Loading over 24-hrs period	.43
Fig 3.25	Top oil, hotspot and ambient temperature at long time emergency loading.	.43
Fig 3.26	Transformer short Time Emergency Loading over 24-hrs period	44
Fig 3.27	Top oil, hotspot and ambient temperature at short time emergency loading	.44
Fig 3.28	Simulink model for transformer loaded with nonlinear load	.47
Fig 3.29	Top oil thermal model with harmonic constant load	48
Fig 3.30	Hotspot thermal model with harmonic constant load	.49
Fig 3.31	Hotspot temp with constant harmonic load	.50
Fig 4.1	Network configuration studied	.54
Fig 4.2	Electric network model.	55
Fig 4.3	The non-linear curve current-flux	56
Fig 4.4	The standard lightning wave	.57
Fig 4.5	Overvoltage wave at phase B of high voltage winding	.58
Fig 4.6	Transferred wave at phase b of low voltage winding	.58
Fig 4.7	Overvoltage wave at phase B of high voltage winding	.59
Fig 4.8	Transferred wave at phase b of low voltage winding	59
Fig 4.9	Overvoltage wave at phase B of high voltage winding	.60
Fig 4.10	Transferred wave at phase b of low voltage winding	.60
Fig 4.11	Overvoltage wave at phase B of high voltage winding	.63
Fig 4.12	Transferred wave at phase b of low voltage winding	.64
Fig 4.13	Overvoltage wave at phase B of high voltage winding	.64

Fig 4.14	Transferred wave at phase b of low voltage winding	.65
_	Overvoltage wave at phase B of high voltage winding with surge arrestor 5 from transformer	
	Overvoltage wave at phase B of high voltage winding with surge arrestor 1 from transformer	
_	Overvoltage wave at phase B of high voltage winding with surge arrestor 3 m transformer	
Fig 4.18	The lightning wave 0.5/60 µs, 50 kA	68
Fig 4.19	Overvoltage wave at phase B of high voltage winding	.68
Fig 4.20	Transferred wave at phase b of low voltage winding.	.69
Fig 4.21	Overvoltage wave at phase B of high voltage winding	.69
Fig 4.22	Transferred wave at phase b of low voltage winding.	.70
Fig 4.23	The lightning wave 8/20 µs, 50 kA.	70
Fig 4.24	Overvoltage wave at phase B of high voltage winding	.71
Fig 4.25	Transferred wave at phase b of low voltage winding.	.71
Fig 4.26	Overvoltage wave at phase B of high voltage winding	.72
Fig 4.27	Transferred wave at phase b of low voltage winding.	.72
Fig 4.28	Standard switching wave.	.73
Fig 4.29	Overvoltage wave at phase B of high voltage winding	.74
Fig 4.30	Transferred wave at phase b of low voltage winding	.74
Fig 4.31	Overvoltage wave at phase B of high voltage winding	.75
Fig 4.32	Transferred wave at phase b of low voltage winding	.75
Fig 4.33	Switching transformer through cable	76
Fig 4.34	Phase A of high voltage winding.	.76
Fig 4.35	Phase B of high voltage winding	.76
Fig 4.36	Phase C of high voltage winding	.76

Fig 4.37	Phase a of low voltage winding	.77
Fig 4.38	Phase b of low voltage winding.	77
Fig 4.39	Phase c of low voltage winding.	.77
Fig 4.40	Phase A of high voltage winding.	.78
Fig 4.41	Phase B of high voltage winding.	.78
Fig 4.42	Phase C of high voltage winding.	.78
Fig 4.43	Phase a of low voltage winding.	.79
Fig 4.44	Phase b of low voltage winding.	79
Fig 4.45	Phase c of low voltage winding.	.79
Fig 4.46	Switching surge due to fault clearing by tripping C.B.	.80
Fig 4.47	Over voltage wave at high winding at phases (B)	.81
Fig 4.48	Overvoltage wave at low voltage phase (a)	.81
Fig 4.49	Overvoltage wave at fault phase (b)	.82
Fig 4.50	Over voltage wave at high winding at phases (B)	.82
Fig 4.51	Overvoltage wave at low voltage phase (a)	.83
Fig 4.52	Overvoltage wave at fault phase (b)	.83
Fig 4.53	Graphic Overview of Margin of Protection Calculations	84
Fig 5.1	Aging acceleration factor against hotspot temperature	.90
Fig 5.2	The ambient temperature, hottest spot temperature and normal load cycle	.91
Fig 5.3	Aging acceleration factor for normal load cycle	.91
	The ambient temperature, hottest spot temperature and longtime emergency	
Fig 5.5	Aging acceleration factor for long time emergency loading	92
Fig 5.6	The ambient temperature, hottest spot temperature and short time emergence	y 93

Fig 5.7	Aging acceleration factor for short time emergency loading	93
Fig 5.8	Simulink model for calculating transformer loss of life	94
Fig 5.9	The hotspot temperature for a constant load with and without harmonics	95
_	The per unit loss of life factor for a constant load with and without harmon	
Fig 5.11	Sample of paper for healthy transformer	96
Fig 5.12	Sample of paper for transformer at end of its life	97
Fig 5.13	The calculated degree of polymerization for various models	99
Fig 5.14	The calculated life used years for various models	100

Nomenclature

TS Tensile Strength

IEC International Electro-technical Commission

IEEE Institute for Electrical and Electronics Engineers

DP The degree of polymerization

HST Hot-spot temperature Θ_A Ambient temperature, °C.

 $\Delta\Theta_{TO}$ Oil temperature rise over ambient, °C

 $\Delta\Theta_{\rm H}$ Hot spot temperature rise over top oil temperature, °C.

 $\Theta_{\rm H}$ Final hot spot temperature, °C.

 $\Delta\Theta_{TO-R}$ Top oil temperature rise over ambient at rated load R atio of load losses at rated current to no load losses

K Load factor (supplied load/rated load)

n An empirically derived exponent that relies on the cooling method
Hot spot factor due to the increased eddy losses at the winding end
Average winding to average oil temperature rise at rated load

m An empirically derived exponent that depends on the cooling method

 $\Delta\Theta_{TO.U}$ Ultimate top oil temperature rise over ambient temperature

 τ_{TO} Top oil rise time constant

 $\Delta\Theta_{\rm HU}$ Ultimate hot spot temperature rise top oil temperature

 $\tau_{\rm H}$ Hot spot rise time constant

 $\begin{array}{ll} q_{Tot} & \text{Heat generated by total losses, W} \\ C_{\text{th-Oil}} & \text{Oil thermal capacitance W.min/}^{\circ} \, C, \end{array}$

 $\begin{array}{ll} R_{\text{th-Oil}} & \text{Oil thermal resistance}^{\circ} \text{ C/W,} \\ \Theta_{\text{Oil}} & \text{Top oil temperature,} ^{\circ} \text{ C} \\ I_{\text{pu}} & \text{Load current per unit power} \end{array}$

q_w Heat generated by losses at the hot spot location, W

C_{th-H} Winding Thermal Capacitance at the hot spot location, W.min/° C

$$\begin{split} R_{\text{th-H}} & \quad \text{Thermal resistance at the hot spot location } ^{\circ}\text{C/W} \\ P_{\text{EC-R(pu)}} & \quad \text{Rated eddy current losses at the hot spot location} \end{split}$$

P_{TL} Transformer Total Losses

P_{NL} No Load Losses
P_{LL} Load Losses

 P_{Ω} Losses due to Load current and Dc Winding Resistance

P_{EC} Winding Eddy Losses P_{OSL} Other Stray Losses