

DETECTION AND ANALYSIS OF PERFORMANCE OF THREE PHASE INDUCTION MOTOR SUBJECTED TO DIFFERENT TYPES OF FAULTS

By

Emad Fathy Yassin Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016 DETECTION AND ANALYSIS OF PERFORMANCE OF THREE PHASE INDUCTION MOTOR SUBJECTED TO DIFFERENT TYPES OF FAULTS

By Emad Fathy Yassin Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. Mahmoud M. Abdel-Hakim	Prof. Dr. Samia Mohamed El-Hakim
Professor of Machines	Professor of Machines
Electrical Power and Machines Department	Electrical Power and Machines Department
Faculty of Engineering Cairo University	Faculty of Engineering Cairo University

DETECTION AND ANALYSIS OF PERFORMANCE OF THREE PHASE INDUCTION MOTOR SUBJECTED TO DIFFERENT TYPES OF FAULTS

By Emad Fathy Yassin Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Mahmoud Mohamed Abdel-Hakim, Thesis Main Advisor

Prof. Dr. Samia Mohamed El-Hakim, Member

Prof. Dr. Mohab Mokhtar Hallouda, Internal Examiner

Prof. Dr. Rizk Mohamed El Sayed Hamouda, External Examiner

- Head of Energy Department – Heliopolis University

Engineer: Emad Fathy Yassin Mahmoud

Date of Birth: 4 / 12 / 1988

Nationality: Egyptian

E-mail: emadfathy_56@yahoo.com

Phone.: 01118520868/ 0238661640

Address: Kafr El-waslin- Atfih-Giza

Registration Date: 1/10 /2011

Awarding Date: / / 2016

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Mahmoud Mohamed Abdel-Hakim

Prof. Dr. Samia Mohamed El-Hakim

Examiners: Prof. Dr. Mohab Mokhtar Hallouda

Prof. Dr. Rizk Mohamed El Sayed Hamouda

(Head of Energy Department – Heliopolis University

Prof. Dr. Mahmoud Mohamed Abdel-Hakim

Prof. Dr. Samia Mohamed El-Hakim

Title of Thesis: "Detection and Analysis of Performance of Three Phase Induction Motor Subjected to Different Types of Faults"

Key Words: Induction motor- Stator inter turn fault - Broken bar fault- Fault detection - MCSA

Summary:

The main objective of this thesis is to study the performance of a 3-phase induction motor under faulty conditions. Broken bar rotor fault, the inter turn short circuit fault in the stator winding and mixed fault of the mentioned two types of faults are considered in details. The mathematical model is presented in healthy and faulty motor.

The MCSA is used to detect and diagnosis the fault. The simulation results done are compared with experimental results done in previous work. The error is acceptable if we take into account the simplifying assumptions in the derivation of the mathematical model and also the experimental errors normally evolved in the measurements.

Acknowledgments

This research has been carried out at Cairo University, Egypt, in the department of Electrical Power and Machines. This M.Sc. thesis could not have been finished without the help and support of many people. I would like to take this opportunity to express my gratitude to them.

First of all, I wish to express my sincere gratitude to my supervisors Prof.Dr. **Mahmoud Abd-Elhakim** and Prof. Dr. **Samia El-hakim**. I am truly grateful to them for trusting my ability to complete this work and for the valuable suggestions and ideas during this work. Their patience and kindness are greatly appreciated.

Special thanks for my friend Eng. Ramadan Ragab for his kind support and sincere cooperation in solving some problems in the simulation program that was used in this thesis.

Last but not least, I am always indebted to all my family members, especially my **Mother** and my **Brother**, for their endless support and love. Also i want to thank **Yasser Shabaan** for his support. I greatly appreciate the sacrifices and understanding of my beloved wife **Afaf Masowd** during my struggling years, without which the completion of my study would not have been possible.

Finally, I present this work to **my Father**, God's mercy upon him, I ask Allah to make this work in his balance of his good deeds.

Table of Contents

Acknowledgments	I
Table of Contents	II
List of Symbols	V
List of Abbreviations	VII
List of Figures	VIII
List of Tables	XVI
ABSTRACT	XVIII
Chapter One	
Introduction and Thesis Structure.	
1.1 Overview.	
1.2 Thesis Objectives.	
1.3 Thesis Contents	3
Chapter Two	
Faults and Detection Techniques in Induction Machines	
2.1 Three Phase Induction Motor	5
2.1.1 The Stator	5
2.1.2 The Rotor	5
2.2 The Squirrel Cage Induction Motor Fault Types	7
2.3 Various Techniques of Condition Monitoring	10
2.3.1 Vibration Monitoring	10
2.3.2 Thermal Monitoring	11
2.3.3 Electrical Monitoring Schemes	12
2.3.3.1 Motor Current Signature Analysis (MCSA)	12
Chapter Three	
Modeling of Three Phase Induction Motor for Healthy and Faulty Condit	ions
3.1 Mathematical model under Healthy Conditions	
3.1.1 Stator Voltage Equations	
3.1.2 The Rotor Voltage Equations	
3.1.3 The Mechanical Equation	
3.2 Calculation of Inductances	19

3.3 The Squirrel Cage Induction Motor Modeling under Broken Bars Fault Condition	24	
3.3.1 Calculation of Inductances of the Faulty Loop		
3.4 Stator Inter-Turn Fault.		
3.4.1 The Induction Motor Modeling under Healthy Conditions	28	
3.4.1.1 Stator Voltage Equations		
3.4.1.2 Rotor Voltage Equations	29	
3.4.2 Dynamic d-q Model	30	
3.4.2.1 The Transformation from ABC to d-q for the stator	31	
3.4.2.2 The Transformation from ABC to d-q for the rotor	32	
3.4.2.3 The Mechanical Equation		
3.4.3 The Induction Motor Modeling under Inter-turn Fault Conditions	35	
3.4.3.1 Inductances Calculations		
3.4.3.2 The Mechanical Equation	38	
3.5 Mixed Fault (Stator Inter-Turn Fault and Rotor Broken Bars Fault)	39	
3.5.1 Inductance Calculations	40	
3.5.2 Stator Voltage Equations	42	
3.5.3 Rotor Voltage Equations	42	
3.5.4 The Mechanical Equation	43	
3.6 Conclusion.	43	
Chapter Four		
Simulation Results and Performance Analysis		
4.1 Simulink Model	45	
4.2 Simulation Results	54	
4.2.1 The Simulation Results Using the Motor Modeling in ABC Frame	54	
I Simulation Results for Healthy Operating Conditions	54	
II Simulation Results for Broken Rotor Bars Fault Conditions	55	
4.2.2 Observations	78	
4.3 The Simulation Results Using the Motor Modeling in d-q Frame	79	
4.3.1 The Simulation Results for Healthy Operating Conditions	79	
4.3.2 The Simulation Results for Inter-Turn Short Circuit Fault	83	
4.3.2.1 Observations	89	
4.4 The Simulation Results for Mixed Fault	90	
4.4.1 Observations.	97	

4.5 Conclusion
Chapter Five
Motor Current Signature Analysis under Fualty Conditions
5.1 Fault Characteristics Frequencies
5.1.1 Stator Inter-Turn Fault
5.1.2 Broken Rotor Bars Fault
5.1.3 Rotor Eccentricity Fault
5.1.4 Bearing Faults
5.2 Motor Current Signature Analysis (MCSA)
5.2.1 MCSA Results under Healthy Conditions
5.2.2 MCSA Results under Broken Rotor Bars Faulty Conditions
5.2.3 Observations
5.2.4 Experimental Verification
5.2.5 MCSA Results under Stator Inter-Turn Faulty Conditions
5.2.5.1 Observations
5.2.5.2 Experimental Verification
5.2.4 MCSA Results under Mixed Faulty Conditions
5.2.4.1 Observations
5.2.5 Comments
5.3 Conclusion
Chapter Six
Conclusions and Future Work
6.1 Conclusion
6.2 Future work
References 128
Appendices
Appendix A: Motor parameters
Appendix B: Amplitude in Decibels (dB)
Appendix C: Transformation from ABC to d-q
Appendix D: Winding Factor
الملخص

List of Symbols

e
`
)
. ADC frame
n ABC frame
3-phase rotor
ca h
se b
se a

L_{ls}	Stator leakage inductance
L_{lr}	Rotor leakage inductance
L_{shsh}	Self-inductance of stator shorted turns
L'_{asas}	Self-inductance of stator un-shorted turns
L_{assh}	Mutual-inductance between stator phase a (un-shorted windings) and
	shorted turns
L_{shbs}	Mutual-inductance between stator phase b and shorted windings
L_{shar}	Mutual-inductance between rotor phase a and shorted windings
$oldsymbol{L_{qdo}^{ss}}$	Stator inductances matrix in d-q frame
$L_{qdo}^{shar} \ L_{qdo}^{rr} \ L_{qdo}^{rr}$	Rotor inductances matrix in d-q frame
L_{qdo}^{sr}	Stator to rotor mutual inductance matrix in d-q frame
L_q^s	Quadrature axis stator self-inductance
L_d^{s}	Direct axis Stator self-inductance
L_q^r	Quadrature axis rotor self-inductance
$L_d^{\dot{r}}$	Direct axis rotor self-inductance
$L_d^{\dot{r}} \ L_q^{sh}$	Quadrature axis shorted winding self-inductance
L_d^{r}	Direct axis stator to rotor mutual inductance
L_q^{ssh}	Quadrature axis stator to shorted winding mutual inductance
L_q^{shr}	Quadrature axis rotor to shorted winding mutual inductance
$\overset{q}{n}$	Number of rotor bars or loops.
N_a	Number of turns of phase a
N_r^a	Number of turns of rotor phase
N_s	Number of turns of a stator phase (assume symmetrical stator phases)
N_{sh}	Number of turns of shorted winding
N_f	Number of broken bars
$N_a(\theta_r,\emptyset)$	Winding function of stator phase a
$N_k(\boldsymbol{\theta}_r,\emptyset)$	Winding function of rotor loop k
P	Motor Number of pair poles
\boldsymbol{p}	$=\frac{d}{dt}$ Differential operator
r	The average air gap radius
r_{as}	The resistance of stator phase a
r_s	The resistance of any stator phase (assume symmetrical stator phases)
r_r	The resistance of any rotor phase (assume symmetrical rotor phases)
r_{sh}	Resistance of shorted windings
r_{ext}	External resistance
R_b	Bar resistance
R_e	End ring resistance
R^s	Stator resistance matrix
R^r	Rotor resistance matrix
R^r_{abc}	Rotor resistance matrix with equivalent 3-phase rotor
S	Rotor slip
T_{em}	The machine electromagnetic torque
Vs	Stator voltage vector in ABC frame
V^r	Rotor voltage vector in ABC frame

 V_{abc}^r Rotor voltage vector in ABC frame with equivalent 3-phase rotor V_{qdo}^s V_{qdo}^r V_q^s V_d^s V_q^s Stator voltage vector in d-q frame Rotor voltage vector in d-q frame Quadrature axis stator voltage Direct axis stator voltage Quadrature axis rotor voltage V_d^r Direct axis rotor voltage Mechanical angular velocity (rad/sec²) ω_m Stator inter-turn fault percentage % X = $4\pi * 10^{-7}$ H/m, The permeability of the free space μ_{o} Skewing angle of the rotor γ The angle between any two healthy adjacent bars. α_r λ_{abc}^{s} Stator flux linkages matrix Rotor flux linkages matrix with equivalent 3-phase rotor λ_{abc}^{r} Rotor flux linkages matrix λ^r λ_q^s λ_d^s λ_q^r λ_d^r Quadrature axis stator flux linkage Direct axis stator flux linkage Quadrature axis rotor flux linkage Direct axis rotor flux linkage

List of Abbreviations

Electromotive force **EMF** Magnetomotive force MMF MCSA Motor Current Signature Analysis Winding Function Theory WFT **SCIM** Squirrel cage induction machine Artificial Neural Network ANN D.O.L Direct on-line **Fuzzy Logic** FL Fast Fourier Transform FFT National Electrical Manufacturers Association **NEMA IEC** International Electrotechnical Commission **EPRM** Electric Power Research Institute **IEEE** Institute of Electrical and Electronics Engineers

List of Figures

Figure 2. 1: The induction machine construction
Figure 2. 2: The induction machine main parts stator and squirrel cage rotor6
Figure 2. 3: The wound rotor construction of the induction machine
Figure 2. 4: The squirrel cage rotor construction of the induction machine
Figure 2. 5: Squirrel cage induction motor faults classification
Figure 2. 6: Percentage component of induction motor failure according to IEEE and EPRI survey
Figure 2. 7: Examples of stator winding inter-turn fault
Figure 2. 8: Broken rotor bars (left), broken rotor bars and end ring (right)9
Figure 2. 9: An example for stator laminated core fault9
Figure 2. 10: The suggested position of the vibration sensors on the machine housing frame
Figure 2. 11: The side band components around the fundamental frequency for the case of broken rotor bars fault
Figure 3. 1: The representation of the squirrel cage rotor loops
Figure 3. 2: The rotor winding circuit representation for healthy rotor
Figure 3. 3: The sinusoidal distribution of phase a of the stator for 2-pole machine20
Figure 3. 4: The winding function of stator phase a for 2-pole machine21
Figure 3. 5: The winding function of any rotor loop in the healthy conditions21
Figure 3. 6: The rotor winding circuit representation for one broken rotor bar24
Figure 3. 7: The rotor winding circuit representation 2 adjacent broken rotor bars24
Figure 3. 8: The representation of the faulty rotor loops
Figure 3. 9: The winding function of a faulty rotor loop
Figure 3. 10: The representation of the q-d frame for the ABC stator windings31
Figure 3. 11: The representation of the q-d frame for the ABC rotor windings32
Figure 3. 12: The representation of the inter-turn fault in the ABC frame35

Figure 3. 13: The representation of the inter-turn fault in the d-q frame37
Figure 3. 14: Representation of the motor circuits under mixed fault conditions39
Figure 4.1- A: Layout of Simulink model of the three phase induction motor in the ABC frame
Figure 4.1- B: The induction machine sub-system block
Figure 4.1- C: simulation blocks to calculate the rotor loops currents47
Figure 4.1- D: The sub-system of the Lsr block
Figure 4.1- E: The sub-system of the Lai book
Figure (4.2- A): The overall simulation model of the induction machine under interturn fault in q-d stationary frame
Figure (4.2- B): The sub-system of the induction motor block
Figure (4.2- C): The subsystem ABC to d-q block
Figure (4.2- D): The q-d to ABC frame sub-system
Figure (4.2- E): The flux calculation sub-system
Figure (4.2- F): The motor model sub-system
Figure 4. 3: The sub-system of the Lai bock for 5-broken bars53
Figure 4. 4: The motor torque at full-load for healthy conditions
Figure 4. 5: The motor speed at full-load for healthy conditions
Figure 4. 6: The stator current of phase a at full-load for healthy conditions55
Figure 4. 7: The peak value of the rotor bar currents at full-load for healthy conditions
Figure 4. 8: The stator current at no-load, half-load and full load (from up to down) for one broken bar
Figure 4. 9: The motor torque at no-load, half-load and full load (from up to down) for one broken bar

Figure 4. 10: The motor speed at no-load, half-load and full load (from up to down) for one broken bar
Figure 4. 11: The rotor bar currents (peak value) at no-load, half load and full load (from up to down) for one broken bar
Figure 4. 12: The instantaneous value of the rotor bar currents at no-load, half-load and full load (from up to down) for one broken bar
Figure 4. 13: The steady state stator current at no-load, half-load and full load (from up to down) for 3 broken bars
Figure 4. 14: The motor speed at no-load, half-load and full load (from up to down) for 3 broken bars
Figure 4. 15: The motor torque at no-load, half-load and full load (from up to down) for 3 broken bars
Figure 4. 16: The rotor bars currents (peak value) at no-load, half load and full load (from up to down) for 3 broken bar
Figure 4. 17: The instantaneous value of the rotor bar currents at no-load, half-load and full load (from up to down) for 3 broken bar
Figure 4. 18: The steady state stator currents at no-load, half load and full load (from up to down) for 5 broken bar
Figure 4. 19: The steady state speed at no-load, half load and full load (from up to down) for 5 broken bar
Figure 4. 20: The motor torque at no-load, half load and full load (from up to down) for 5 broken bar
Figure 4. 21: The rotor bars currents (peak value) at no-load, half load and full load (from up to down) for 5 broken bar
Figure 4. 22: The steady state stator currents at no-load, half load and full load (from up to down) for 8 broken bar
Figure 4. 23: The steady state speed at no-load, half load and full load (from up to down) for 8 broken bar
Figure 4. 24: The motor torque at no-load, half load and full load (from up to down) for 8-broken bar
Figure 4. 25: The rotor bars currents (peak value) at no-load, half load and full load (from up to down) for 8-broken bar
Figure 4. 26: The steady state stator currents at no-load, half load and full load (from up to down) for 12 broken bar

Figure 4. 27: The steady state speed at no-load, half load and full load (from up to down) for 12 broken bar
Figure 4. 28: The motor torque at no-load, half load and full load (from up to down) for 12 broken bar
Figure 4. 29: The rotor bars currents (peak value) at no-load, half load and full load (from up to down) for 12-broken bar
Figure 4. 30: Torque of the induction motor under healthy conditions79
Figure 4. 31: The speed of the induction motor under healthy conditions79
Figure 4. 32: The stator phase current of the induction motor in healthy conditions79
Figure 4. 33: Motor torque for the two models at no-load
Figure 4. 34: Motor speed for the two models at no-load
Figure 4. 35: Motor stator current for the two models at no-load
Figure 4. 36: Motor torque for the two models at full-load
Figure 4. 37: Motor speed for the two models at full-load
Figure 4. 38: Motor stator current for the two models at full-load82
Figure 4. 39: The motor torque at no-load with 5% shorted turns83
Figure 4. 40: The motor speed at no load with 5% shorted turns
Figure 4. 41: The stator currents at no load with 5% shorted turns84
Figure 4. 42: The motor torque at half load with 5% shorted turns84
Figure 4. 43: The speed of the motor at half load with 5% shorted turns84
Figure 4. 44: The stator currents at half load with 5% shorted turns85
Figure 4. 45: The motor torque at full load with 5% shorted turns85
Figure 4. 46: The motor speed at full load with 5% shorted turns85
Figure 4. 47: The steady state stator currents at full load with 5% shorted turns86
Figure 4. 48: The motor torque at full load with 10% shorted turns
Figure 4. 49: The speed of the motor at full load with 10% shorted turns87
Figure 4. 50: The steady state stator currents at full load with 10% shorted turns87
Figure 4. 51: The motor torque at full load with 15% shorted turns