

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

EFFECT OF OSMOTIC POTENTIAL OF SUGARS ON THE BIOLOGICAL ACTIVITY OF YEAST

Ву

GEHAN FAROUK GALAL AHMED

B.Sc. Agric. Microbiology (1990)

A thesis submitted in partial fulfillment

of

the requirements for the degree of MASTER OF SCIENCE

In

Agriculture Science (Agricultural Microbiology)

Department of Agric. Microbiology

Laculty of Agriculture

Ain Shams University

BKAI

t ,vèc y

for.

.

. .

EFFECT OF OSMOTIC POTENTIAL OF SUGARS ON THE BIOLOGICAL ACTIVITY OF YEAST

Ву

GEHAN FAROUK GALAL AHMED

B.Sc. Agric. Microbiology, 1990 Ain Shams University

Under the supervision of:

Prof. Dr. E.M. Ramadan

Prof. of Agric. Microbiol., Fac, Agric., Ain Shams Univ.

Prof. Dr. Rawia F. Gamal

Prof. of Agric. Microbiol., Fac. Agric., Ain Shams Univ.

Dr. Hemmat M.M. Abdel Hady

Associate Prof. of Agric. Microbiol., Fac. Agric., Ain Shams Univ.

ameder t

Approval Sheet

EFFECT OF OSMOTIC POTENTIAL OF SUGARS ON THE BIOLOGICAL **ACTIVITY OF YEAST**

GEHAN FAROUK GALAL AHMED

B.Sc. Agric. Microbiology, Fac. Agric., Ain Shams University, 1990

This thesis for M.Sc. Degree has been approved by:

Prof. Dr. S.A. El-Saved

Head of Research, Agriculture Research Centre

Prof. Dr. M. El-Sawy

Prof. Emeritus of Agric. Microbiology, Fac

Ain Shams Univ.

Prof. Dr. E.M. Ramadan

Prof. of Agric. Microbiology, Fac. of Agric., Ain Shams

Univ. (Supervisor)

Date of examination: 9/6/1997

olis ; m\A ,otolo

The second of th

ACKNOWLEDGEMENT

The auther wishes to express her sincere appreciation and gratitude to **Prof. Dr. E.M. Ramadan,** Professor of Agric. Microbiology, **Prof. Dr. Rawia F. Gamal,** Professor of Agric. Microbiology and **Dr. Hemmat M. Abdel Hady,** Associate Professor of Agric. Microbiology, Faculty of Agric., Ain Shams University for their supervision, suggesting the problem, valuable advise, guidance and constructive criticism.

Grateful thanks are also extended to **Prof. Dr. A. Hazem,** head of Dept. of Agric. Microbiol., Faculty of Agric., Ain Shams University for the facilities offered and his encouragments. Thanks are also due to all my collegues of the Dept. of Agric. Microbiol., FacoAgric., Ain Shams Univ.

- ; ; -

il.

e Prince a_{RY}

. bifei -- Sar-, क्षेत्री

.0 ii

;<u>y</u>

 C^{*}

JA. väc

-15°

diy.

ABSTRACT

Gehan Farouk Galal Ahmed, Effect of Osmotic Potential of Sugars on the Biological Activity of Yeast Unpublished Master of Science, University of Ain Shams, Faculty of Agriculture, Department of Microbiology, 1997.

Thirty nine osmophilic yeasts were isolated from different foodstuffs. These yeasts belonged to Torulopsis, Saccharomyces, Candida and Rhodotorula representing 64.1%, 25.6%, 7.7% and 2.6% respect. Three yeast species were selected to study their biological activities being Sacch. kluyveri G29, (highly fermentative) Sacch. cerevisiae S41 (moderatly fermentative) and Rhodotorula mucilaginosa J38 (oxidative yeast). The increase of osmotic potential of sugars inhanced the fermentation products of Saccharomyces species such as glycerol and ethanol whereas a sharpe decrease in biomass was observed. On the contrary, Rhodotorula mucilaginosa J38 biosynthedized more reserved materials (glycogen, Trehalose and soluble sugar) with the increase of sugar stress as compared with fermentative yeasts. These products play an important role in the osmoregulation of cells. These oxidative yeast also produced a higher biomass than fermentative yeasts. All tested yeast strains tolerated sodium chloride up to 10% except Rhodotorula mucilaginosa J38 which grew up to 15%. At 10% sodium chloride, the inhibitory effect of sugar concentration was observed at 40% glucose for Sacch. cerevisiae S41 and Rhodotorula mucilaginosa J38. Organic nitrogen sources decreased the inhibitory effect of osmotic pressure of sugars. The enzyme activity of alcohol dehydrogenase increased gradually with the increase of glucose concentration whereas invernot show any remarkable changes in its activity. tase did

Oxygen consumption rate by yeast cells gradually suppressed by the increase of glucose concentration.

Key words: Osmotolerant yeast, growth parameters, Saccharomyces kluyveri, Saccharomyces cerevisiae, Rhodotorula mucilaginosa, glycerol, ethanol, glycogen, trehalose, soluble sugar.