The effect of Synbiotics on serum Indoxyl Sulfate in Maintenance Haemodialysis Patients

Thesis

Submitted for partial fulfillment of MD Degree in Internal Medicine

Presented by

Norhan Nagdy Madbouli

M.B.B.CH. Faculty of medicine, Ain Shams University

Supervised by

Prof. Dr. Yasser Soliman Ahmed

Professor of Internal Medicine and Nephrology Faculty of medicine, Ain shams university

Prof. Dr. Eman Ibrahim Sarhaan

Professor of Internal Medicine& Nephrology Faculty of medicine, Ain shams university

Prof. Dr. Nayra Shaker Mehanna

Professor of Dairy and Food Microbiology National Research Center

Dr. Mohammed Saeed Hassan

Lecturer of Internal Medicine and Nephrology Faculty of medicine, Ain shams university

Dr. Mostafa Abd-El Nasier Abd-El Gawad

Lecturer of Internal Medicine and Nephrology Faculty of medicine, Ain shams university

Faculty of Medicine
Ain Shams University
2018

تأثير السينبيوتيك على مستوى الاندوكسيل سلفات في الدم في مرضى الاستصفاء الدموي

توطئة للحصول علي درجة الدكتوراه في الامراض الباطنية مقدمة من

الطبيبة/ نورهان نجدي مدبولي بكالريوس الطب والجراحة –ماجيستير الامراض الباطنية تحت اشر اف

أد/ ياسر سليمان أحمد

أستاذ امراض الكلى والباطنة العامة كلية الطب- جامعة عين شمس

أد/ ايمان ابراهيم سرحان

أستاذ امراض الكلى والباطنه العامه كلية الطب- جامعة عين شمس

ادنایرا شاکر مهنا

أستاذ الميكروبيولوجي والصناعات الغذائيه المركز القومى للبحوث

د محمد سعید حسن

مدرس أمراض الكلى و الباطنه العامة كليه الطب-جامعة عبن شمس

د مصطفى عبد النصير عبد الجواد

مدرس أمراض الكلى و الباطنه العامة كليه الطب-جامعة عين شمس كلية الطب

جامعة عين شمس

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Yasser Soliman Ahmed,** Professor of Internal Medicine and Nephrology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Eman Ibrahim Sarhaan,** Professor of Internal Medicine&

Nephrology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Prof. Dr.**Nayra Shaker Mehanna, Professor of Dairy and Food Microbiology, National Research Center, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr.**Mohammed Saeed Hassan, Lecturer of Internal Medicine and Nephrology, Ain Shams University,, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr.**Mostafa Abd-El Nasier Abd-El Gawad, Lecturer of Internal Medicine and Nephrologyy, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Contents

Subjects	Page
• List of Abbreviations	
• List of table	
List of Figures	
• Introduction	
Aim of the Work	
Review of literature:	
Chapter 1: Uremic retention toxins and the	eir
chapter 2: Indoxyl Sulfate as a major g uraemic toxin	gut 30 ey
• Patients And Methods	51
Results	56
• Discussion	78
Summary and Conclusion	91
Recommendation	
References	95
Arabic Summary	-

List of Abbreviations

CKD....: Chronic kidney disease.

AKI..... Acute kidney injury.

kDa.....Kilo Dalton.

ADMA Asymmetric Dimethylarginine.

SDMA......Symmetric Dimethylarginine.

HPLC.....High performance liquid

chromatography.

NO......Nitric oxide.

PBUTsProtein-bound uremic toxins.

HIF...... Hypoxia-inducible factor.

EPO Erythropoietin .

AGE Advanced glycation end products .

NADPH Nicotinamide Adenine Dinucleotide

Phosphate.

PAAPhenylacetic acid.

IAAIndole acetic acid.

OAT......Organic acid transporters.

P-cresol.

PTH Parathyroid hormone.

RAS.....Renin-angiotensin system.

ROSOxygen free radicals.

TMAO Trimethylamine N-oxide.

GFRGlomerular Filtration Rate.

PTC.....Proximal tubular epithelial cells.

TGFTumour growth factor.

EPC.... Endothelial progenitor cells.

Ang-II Angiotensin-II.

CRS..... Cardiorenal syndrome.

HD..... Hemodialysis.

CV.....Cardiovascular.

pH: Power of hydrogen.

ESRD.....End stage renal disease.

TLRs....: Toll-like receptors.

LPSLipopolysaccharides.

CRP C-reactive protein.

Creatinine.

PD Peritoneal dialysis.

IL Interleukin.

HbHemoglobin

BUN Blood Urea Nitrogen

HTN Hypertension

DM.....Diabetes mellites

HCV..... Hepatitis C virus

SBP Systolic blood pressure.

DBP..... Diastolic blood pressure.

GIS.....Gastrointestinal symptoms

List of Table

Tab. No.	Subject	Page
Table (1)	Effects of different uraemic toxins at the cellular and tissue level	17
Table (2)	Serum Indoxyl sulphate concentrations by CKD stage	21
Table (3)	Summary of clinical association studies.	26
Table (4)	Mechanisms underpinning the scientific rationale for the selection of the synbiotic formulation targeting the production of indoxyl sulphate and p-cresyl sulphate	43
Table (5)	Clinical studies with probiotics in patients with CKD and their effects	44
Table (6)	Clinical studies with Synbiotics in patients with CKD and their effects	45
Table (7)	Patient characteristics at the start of the study	49
Table (8)	Demographic data and etiology of renal failure in both groups	50
Table (9)	Parathormone levels (PTH) in both groups before the study	56
Table (10)	Comparison between Hemoglobin (Hb) values in both groups before and after the trial	56
Table (11)	Comparison between Creatinine values in both groups before and after the trial	58
Table (12)	Comparison between Blood Urea Nitrogen (BUN) values in both groups before and after the trial	59
Table (13)	Comparison between Potassium (K) values in both groups before and after the trial	60
Table (14)	Comparison between Sodium (Na) values in both groups before and after the trial	61
Table (15)	Comparison between Calcium (Ca) values in both groups before and after the trial	62
Table (16)	Comparison between Phosphorus (PO4) values in both groups before and after the trial	63
Table (17)	Comparison between C- reactive protein (CRP) values in both groups before and after the trial	64
Table (18)	Comparison between Indoxyl Sulfate (IS)	65

Tab. No.	Subject	Page
	values in both groups before and after the trial	
Table (19)	Comparison between hypertensive and non- hypertensive patients in group (1) as regards Serum IS levels	66
Table (20)	Comparison between diabetic and non-diabetic patients in group (1) as regards Serum IS levels	67
Table (21)	Comparison between HCV-positive and HCV-negative patients in group (1) as regards Serum IS levels	68
Table (22)	Association between serum Indoxyl Sulfate levels (IS) before intervention and the demographic data of all patients	68
Table (23)	Correlation between Indoxyl Sulfate (IS) before intervention and the clinical parameters of all patients	69
Table (24)	Correlation between Indoxyl Sulfate (IS) before the intervention and the laboratory data of all patients	75
Table (25)	Association between Indoxyl Sulfate (IS) after intervention and the demographic data of all patients	75
Table (26)	Correlation between Indoxyl Sulfate (IS) after the trial and clinical parameters of all patients	76
Table (27)	Correlation between Indoxyl Sulfate (IS) and laboratory data of all patients after the trial	76
Table (28)	Correlation between Indoxyl Sulfate (IS) values before the trial and the clinical parameters of each group	76
Table (29)	Correlation between Indoxyl Sulfate (IS) values before the trial the laboratory data of each group	77

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Indoxyl sulphate and kidney disease	16
Fig. (2)	Comparing Hemoglobin (Hb) values in both groups before and after the trial	20
Fig. (3)	demonstrating the change in Hemoglobin (Hb) values in both groups throughout the trial	37
Fig. (4)	Comparing Creatinine values in both groups before and after the trial.	58
Fig. (5)	demonstrating the change in Creatinine values in both groups throughout the trial	59
Fig. (6)	comparing Blood Urea Nitrogen (BUN) values in both groups before and after the trial	60
Fig. (7)	demonstrating the change in Blood Urea Nitrogen (BUN) values throughout the trial.	61
Fig. (8)	comparing Potassium (K) values in both groups before and after the trial	62
Fig. (9)	demonstrating the change in Potassium (K) values in both groups before and after the trial	63
Fig. (10)	comparing Sodium (Na) values in both groups before and after the trial	64
Fig. (11)	demonstrating the change in Sodium (Na) values in both groups throughout the trial	65
Fig. (12)	comparing Calcium (Ca) values in both groups before and after the trial	66
Fig. (13)	emonstrating the change in Calcium (Ca) values in both groups throughout the trial	67
Fig. (14)): comparing Phosphorus (PO4) values in both groups before and after the trial	68
Fig. (15)	demonstrating the change in Phosphorus (PO4) values in both groups throughout the trial	72
Fig. (16)	comparing C reactive protein (CRP) values in both groups before and after the trial	72
Fig. (17)	demonstrating the change in C reactive protein (CRP) values in both groups throughout the trial	73
Fig. (18)	comparing Indoxyl Sulfate (IS) values in both groups before and after the trial	73
Fig. (19)	demonstrating the change in Indoxyl Sulfate (IS) values in both groups before and after the trial.	74

Introduction

Inflammation is a multifactorial phenotype during CKD. Many factors such as decreased clearance of pro-inflammatory cytokines, oxidative stress, metabolic acidosis, infections, dialysis access problems and obesity contribute to inflammation. More recently, alterations in gut microbiota composition and intestinal barrier have been shown to be associated with inflammation and oxidative stress in CKD patients. Few studies have documented the composition of gut microbiota during CKD (*Mafra & Fouque*, 2015).

The imbalance in gut microbiota associated with alterations in colonic epithelium contributes to the accumulation of gut-derived uraemic toxins. Toxic gases, indoxyl sulphate (IS), p-cresyl sulphate (p-CS), amines, ammonia and trimethylamine n-oxide (TMAO) may be absorbed into the bloodstream and be responsible for systemic inflammation (*Mafra & Fouque*, 2015).

Among the uraemic retention solutes, protein-bound compounds such as the p-cresol conjugates p-cresyl sulphate (p-CS) and Indoxyl sulphate (IS) have attracted most interest in recent years due to their poor clearance by conventional dialysis and their potential toxicity (*Poveda et al.*, 2014).

These protein-bound uraemic retention solutes originate from protein fermentation in the large intestine, including p-cresyl sulfate and indoxyl sulphate (*Meijers & Evenepoel*, 2011).

CKD enhances the protein fermentation process through a number of mechanisms including inefficient protein assimilation in the small intestine resulting in more protein entering the large intestine, prolonged colonic transit time, and increased luminal pH secondary to increased colonic urea diffusion, all of which contribute to the alteration of the bacterial composition of the microbiota specific to this population (*Meijers & Evenepoel*, 2011).

Several studies demonstrated direct associations between both *p*-cresyl sulphate and indoxyl sulfate and the overall mortality and cardiovascular disease in both CKD and end-stage renal disease (*Liabeuf et al.*, 2010).

So far, Indoxyl sulfate, is considered to be a key player in increased glomerular sclerosis and progression of CKD (*Tumur et al.*, 2010).

Indoxyl sulfate is also known as to be involved in the pathogenesis of atherosclerosis (*Lin et al., 2010*).

Some recent studies also demonstrated that the QTc interval was prolonged in early CKD patients with a higher serum IS levels (*Tang et al.*, 2015).

Other recent studies suggest that indoxyl sulfate is associated with thrombosis of dialysis grafts after angioplasty. Probiotics are living organisms, administered as food components or supplements, which provide specific benefits by themselves, essentially by creating a more favourable balance in the composition of intestinal microbiota (*Vanholder & Glorieux*, 2015).

Prebiotics are non-digestible compounds improving the composition and/or function of the intestinal microbiota while Synbiotics contain a mixture of prebiotics and probiotics (*Vanholder & Glorieux*, 2015).

Lowering the production of these uremic toxins by manipulating bacterial composition of the microbiota and/or colonic transit time therefore represents a promising therapeutic strategy. (Rossi et al., 2012).

Prebiotics, probiotics and symbiotics could play a role in reducing the generation of uraemic toxins, but the results of clinical studies have been deceiving, with sometimes contradictory results.

In a review by *Rossi et al.*, there were 11 interventions that administered probiotics using an array of different species and strains. Nine of these studies saw a decreasing trend in PCS and/or IS post-intervention, which all seven and four from five found significance, respectively (*Rossi et al.*, 2012).

✓ Introduction

Also there were 13 interventions that used prebiotics with only one in the HD population. Twelve of these interventions observed a trend for a decrease in PCS and/or IS, but only eight of 11 reported a significant decrease in PCS and three out of five a significant decrease in IS (*Rossi et al.*, 2012).

Aim of the work.

To study the possible effect of Synbiotics on serum Indoxyl Sulfate in maintenance hemodialysis patients.