

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

BUOVY

Effect of seedbed preparation on the performance of wheat drilling

By

Refat Mohamed Ghazey El-Marhomey

B.Sc. in Ag. Mech., Faculty of Agric., Kafr El-Sheikh, Tanta University, 1982

THESIS

Submitted to the graduate division in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

IN

AGRICULTURAL SCIENCES

(AGRICULTURAL MECHANIZATION)

Department of Agricultural Mechanization, Faculty of Agriculture, Kafr El-Sheikh, Tanta University

Effect of seedbed preparation on the performance of wheat drilling

By

Rrfat Mohamed Ghazey El-Marhomey

This Thesis for the M.SC. Degree in Agricultural Sciences (Agricultural Mechanization) has been approved by:

- Prof. Dr. Sayed M. Sharaf Shana Shan

SUPERVISION COMMITTEE

Prof. Dr. Mamdouh Abbas Helmy

Professor of Agricultural Engineering, Agricultural Mechanization Department, Faculty of Agriculture, Kafr El-Shiekh, Tanta University

Dr.

Ismail Ahmed AbdelMotaleb

Associate Professor of Agricultural Engineering,
Agricultural Mechanization Department,
Faculty of Agriculture, Kafr El-Shiekh,
Tanta University

ACKNOWLEDGMENT

Thanks to **Allah** (God) for giving me the power to complete this work.

The author would like to express his deepest appreciation and sincere thanks to **Prof. Dr. Metwalli Metwalli Mohamed,** Professor and Head of the Agriculture Mechanization Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University for encouragement and tremendous support.

The author gratefully acknowledges **Prof. Dr. Mamdouh Abbas Helmy**, Professor of Ag. Eng., Agriculture Mechanization Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, for his supervision, continuous scientfic help guidance and revising manuscript.

The author also wishes to express his deep and sincere thanks to *Dr. Ismail Ahmed Abdelmotalb* Associate Prof., Agriculture Mechanization Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, for his supervision, suggesting the problem and continuous scientific help.

Special thanks and great indebtedness to *Dr. El-Said Mohamed Ahmed Khalifa* Lecturer, Agriculture Mechanization Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, for his continuous scientific help and guidance.

Sincere thanks also due to *Mr. El-Sayed Mahmoud Mohammed El-Beily* Associate lecturer of Agriculture Mechanization Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, for his continuous scientific help.

Also deep thanks and gratitude to *Dr. Rezk Mohamed Hassan Kholief* and *Dr. Refaei Refaei Abo Sheishaa El-Sherief* Researchers in Agric. Eng. Res. Institute, Rice Mech. Center, Meet El-Deba, Kafr El-Sheikh, for their valuable assistance and helpful comments during this work.

Special gratitude to my *father*, my *mother*, my *brothers*, my *sisters*, my *wife* my daughter *(Shaimaa)*, my *sons (Mohamed* and *Ahmed)* and my brother-in-law for their concern, encouragement, continuous support and invaluable assistance throughout my study for the M.Sc. Thesis.

I would like to express my sincere and deep thanks to all the staff members of Agriculture Mechanization Department, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, for their help full comments and encouragement.

I would like to express my deep thanks and appreciation to all whom assist me in any way during carrying out the research.

CONTENTS

\cdot	rage
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	.4
2.1. Preparation of seedbed	. 4
2.1.1. Primary tillage	. 4
2. 2. Conservation of surface irrigation	. 6
2.3. Tillage operation and some physical properties of soil	
2.3.1.Soil penetration resistance	
2.3.2. Soil moisture content	
2.3.3.Soil bulk density	
2.3.4. Soil volume disturbed	. 13
2.4. Plowing quality	
2.4.1.Degree of soil plowing	14
2.4.2. Degree of soil pulverization	15
2.5. Fuel consumption and energy requirements for plowing	
operation	16
2.6. Field capacity and efficiency	18
2.7. Cost analysis and economic evaluation	20
3-MATERLALS AND METHODS	24
3.1.Materials	24
3.1.1. Seed-bed preparation	24,
3.1.1.1 Chisel plough	24
3.1.1.2 Rotary plough	24
3.1.1.3 Wooden plate	26
3.1.1.4 Conventional hydraulic and levelling	
3.1.1.5 LASER system	
3.1.1.5.1 Transmitter unit	
3.1.1.5.2 Receiver unit	28
3.1.1.5.3 Control box	30
3.1.1.5.4 Electric Mast	30
3.1.1.5.5 Telescoping grade rod	32
3.1.1.5.6 LASER Eye TH Receiver	32
3.4 Planting machine (seed-drill)	35
3.6 Measurements	35
3.6.1 Miscellaneous equipment	35
3.6.2 Stop watch	37
3.7 Measuring instruments	37
3.7.1 Spring dynamometer	37
3.7.2 The profile meter	37
3.7.3 The net work of wooden blocks	40
3.7.4 Fuel consumption apparatus	40

	Page
3.8 Methods	40
3.8.1 Laboratory experiments	40
3.8.1.1 Soil physical properties	40
3.8.1.1.1 Soil structure	40
3.8.1.1.2 Soil bulk density	40
3.8.1.2 Field experiments	42
3.8.1.2.1 Soil penetration resistance	42
3.8.1.2.2 Fuel consumption	44
3.8.1.2.3 Field efficiency	44
3.8.1.2.4 Power requirement	44
3.8.1.2.5 Dispersion of seeds around the	
center of row	45
center of row	45
3.8.1.2.7 Draft per unit of soil area	45
3.8.1.2.8 Degree of soil pulverization	45
3.8.1.2.9 Relative lift degree of soil	
3.8.1.2.10 Cost analysis	46
4-RESULTS AND DISCSSION	47
1 - Specific fuel consumption	47
2 - Energy requirements for seedbed preparation	50
3 - Drabar pull	52 - `
4 - Drawbar power	54
5 - Specific draught	56
6 - Slip ratio	56
7 - The relative lift degree	60
8 - Soil relief formation and roughness	60
	64
9 - Soil pulverization	64
10 - Soil penetration resistance	67
12 - Effective field capacity	69
13 - Emergence of wheat seedlings	73
	73 73
14 - Distribution of wheat plants in transverse direction	73 76
15 - Total grain yield per feddan	
16 - Cost analysis and net benefit	78
5 - SUMMARY AND CONCLUSION	83
6 - REFERENCE	90
7 - APPENDIX	96
8 – ARABIC SUMMARY	99

LIST OF FIGURES

Figure	
3 – 1	The seven shares chisel plough of 175 cm, width
3 - 2	The rotary plough
3 - 3	Conventional hydraulic
3 - 4	Transmitter unit
3 - 5	Receiver unit
3 - 6	Control box of LASER land levelling
3 - 7	Electric mast of LASER land levelling
3 - 8	Telescoping grade rod of LASER land levelling
3 - 9	LASER eye receiver of LASERI land levelling
3 - 10	Planting machine (seed – drill)
3- 11	Spring dynamometer
3 - 12	The relief measurement apparatus
3 - 13	The fuel consumption apparatus
3 - 14	Soil penetrometer component (SR-2DIK5500)
4 - 1	Effect of ploughing forward speed, ploughing system and levelling
	system on total fuel consumption
4 – 2	Effect of ploughing forward speed and ploughing type on specific fuel
	consumption
4 - 3	Effect of ploughing forward speed and ploughing type on energy
	requirements
4 - 4	Effect of ploughing system, ploughing forward speed and levelling
	system on drawbar pull
4 - 5	Effect of ploughing forward speed and ploughing type on drawbar power
4 – 6	Effect of ploughing forward speed and ploughing type on specific draft
4 - 7	Effect of ploughing forward speed ploughing type on slip ratio of
	tractor
4 – 8	Effect of ploughing system, ploughing forward speed and levelling
	system on slip ratio of seed drill
4 – 9	The soil profil aspects of three different of ploughing system at ploughing
	forward speed of 2.7 Km/h
4 - 10	The soilprofil aspects of three different of ploughing system at ploughing
	forward speed of 3.8Km/h.
4 - 11	The soilprofil aspects of three different of ploughing system at ploughing
	forward speed of 5.8Km/h
4- 12	Effect of ploughing system, ploughing forward speed and levelling
	system on soil penetration resistance
4 – 13	Effect of ploughing forward speed, ploughing system and levelling
	system on soil bulk density
4 - 14	Effect of ploughing forward speed, ploughing type on affective field
	capacity
4 - 15	Effect of ploughing forward speed, ploughing type on field
	efficiency
4 – 16	Effect of ploughing forward speed, ploughing system and levelling
	system on emergence of wheat seedling

Figure		Page
4 - 17	Effect of ploughing forward speed, ploughing system and levelling	
	system on transvers scattering	75
4 - 18	Effect of ploughing forward speed, ploughing system and levelling	•
	system on total grain yield	77
4 - 19	Effect of ploughing forward speed, ploughing system and levelling	
	system on total income	79
4 - 20	Effect of ploughing forward speed, ploughing system and levelling	
	system on total cost	80
4 - 21	Effect of ploughing forward speed, ploughing system and levelling	
•	system on interst of investment	82

LIST OF TABLES

Table		Page
2 - 1	Life and repair costs of machines	22
3 - 1	Technical data and specifications of chisel plough	24
3 - 2	Technical data and specifications of rotary plough	26
3 - 3	Levelling implementation design and operating parameters	26
3 – 4	Technical data and specifications of transmitter unit	28
3 – 5	Specification of the receiver	30
3 – 6	Specification of the control box unit	30
3 - 7	Specifications of the electric mast unit	32
3 - 8	Specifications of the LASER Eye TH Receiver unit	32
3 – 9	Technical and Functional data of planting machine (seed drill)	35
3 - 10	Specifications of the dynamometer	37
3 - 11	The mechanical analysis of the soil	40
3 – 12	Technical data and specifications of cone penetrometer	42
4 - 1	Effect of ploughing system, ploughing forward speed and levelling	
	system on total fuel consumption rate (l/h)	47
4 – 2	Effect of interaction between ploughing system and ploughing forward	•••
	speed on total fuel consumption rate (l/h)	50
4 - 3	Effect of ploughing system and ploughing forward speed on energy	
	requirements (kW.h/fed.)	50
4 – 4	Effect of interaction between ploughing system and ploughing forward	• •
	speed on energy requirements (kW.h/fed.)	52
4 – 5	Effect of ploughing system, ploughing forward speed and levelling	J.2
	system on drawbar pull (daN)	52
4 – 6	Effect of interaction between ploughing system and levelling system on	
	drawbar puli (daN)	54 .
4 – 7	Effect of interaction between ploughing system and ploughing forward	
	speed on drawbar pull (daN)	54
4 – 8	Effect of interaction between ploughing system and ploughing forward	
	speed on drawbar power (kW)	`56
4 – 9	Effect of interaction between ploughing system and ploughing forward	- •
,	speed on specific draught (daN/m)	56
4 – 10	Effect of ploughing system, ploughing forward speed and levelling	
	system on slip ratio of seed-drill (%)	60
4 – 11	Effect of ploughing system, ploughing forward speed and levelling	
	system on soil penetration resistance (kPa)	66
4 – 12	Effect of interaction between ploughing system and ploughing forward	
	speed on soil penetration resistance (kPa)	66
4 – 13	Effect of interaction between ploughing system and levelling system on	
	soil penetration resistance (kPa)	66
4 – 14	Effect of interaction between levelling system and ploughing forward	
	speed on soil penetration resistance (kPa)	67
l – 15	Effect of ploughing system, ploughing forward speed and levelling	
	system on soil bulk density (g/cm ³)	67
1 – 16	Effect of interaction between ploughing system and ploughing forward	
	speed on soil bulk density (g/cm ³)	69

Table		
4 - 17	Effect of interaction between ploughing system and levelling system on	
	soil bulk density (g/cm ³)	
4 - 18	Effect of interaction between levelling system and ploughing forward	
	speed on soil bulk density (g/cm ³)	
4 - 19	Effect of ploughing system and ploughing forward speed on effective fild	
	capacity (fed/h) and field efficiency (%)	
4 - 20	Effect of interaction between ploughing system and ploughing forward	
	speed on effective field capacity (fed/h)	
4 - 21	Effect of interaction between ploughing system and ploughing forward	
	speed on field efficiency (%)	
4 – 22	Effect of ploghing system, ploughing forward speed and levelling system	
	on emergence of wheat seedling (%)	
4 – 23	Effect of ploghing system, ploughing forward speed and levelling system	
	on tranverse scattering (cm).	
4 - 24	Effect of ploghing system, ploughing forward speed and levelling system	
	on total grain yield (MG/fed)	
4 - 25	Effect of ploghing system, ploughing forward speed and levelling system	
	on total income and cost	
4 – 26	Effect of ploghing system, ploughing forward speed and levelling system	
	on interest of investment	
7 – 1	ANOVA Table indicates the effect of ploughing system, ploughing	
	forward speed and their interaction on total fuel consumption rate	
7 - 2	ANOVA Table indicates the effect of ploughing system, ploughing	
	forward speed and their interaction on energy requirements	
7 – 3	ANOVA Table indicates the effect of ploughing system, ploughing	
	forward speed, levelling system and their interaction on drawbar pull	
7 – 4	ANOVA Table indicates the effect of ploughing system, ploughing	
	forward speed and their interaction on drawbar power	
7 – 5	ANOVA Table indicates the effect of ploughing system, ploughing	
	forward speed and their interaction on specific draught	
7 – 6	ANOVA Table indicates, the effect of ploughing system, ploughing	
	forward speed, levelling system and their interaction on soil penetration	
	resistance	
7 – 7 – 7		
	forward speed and their interaction on actaul field capacity	
7 – 8	ANOVA Table indicates the effect of ploughing system, ploughing	
	forward speed and their interaction on field efficiency	