Role of Exhaled Nitric Oxide in Chronic Obstructive Pulmonary Disease (COPD): Correlation With Pulmonary Function Tests

Thesis

Submitted in Partial Fulfillment of the Requirements for Master Degree in Chest Diseases

By Marwa Mohammed Abd El-Rady Ahmed *M.B., B. Ch.*

Supervised By

Prof. Tarek Mohamed Safwat

Prof. of Chest Diseases Faculty of Medicine Ain Shams University

Assistant Prof. Laila Ashour Helala

Assistant Professor of Chest Diseases Faculty of Medicine Ain Shams University

Assistant Prof. Magid A. El-Setouhy

Assistant Professor of Community, Environmental & Occupational Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine AIN SHAMS UNIVERSITY 2004

Acknowledgement

Thanks first and last to **Allah**, as we owe to him for his great care, support and guidance in every step in our life. It is a great pleasure to acknowledge my deepest gratitude to **Prof. Tarek Mohamed Safwat**, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for his unlimited help, continuous encouragement and kind supervision.

I have the greatest pleasure to express my gratitude to **Assistant Prof. Laila Ashour Helala**, Assistant Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for endless support and great assistance of this work, without her kind care, expert advice and criticism, this work would have not been accomplished.

I wish to express my deepest gratitude and appreciation to **Assistant Prof. Magid A. El-Setgouhy,** Assisant Professor of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, for his kind help, guidance and sound advice were essential for completion of this work.

Lastly grateful thanks to all my Professors of Chest Diseases and all those who give me hand in the finalization of this work.

CONTENTS

	Page
Introduction	1
Aim of the Work	
Review of Literature	
- Definitions	
- Epidemiology	
- Risk factors for COPD	
- Pathogenesis of COPD	
- Diagnosis	
- Staging of COPD	
- Nitric oxide	
- Nitric oxide in exhaled air	
- Exhaled nitric oxide in COPD	
- Exhaled nitric oxide in other pulmonary diseases	
Subjects and Methods	
Results	
Discussion	
Summary	
Conclusions	
Recommendations	
References	
Arabic Summary	

LIST OF ABBREVIATIONS

AAT Alpha-1-antirypsin

AHR Airway hyperresponsiveness

ARDS Adult respiratory distress syndrome

BAL Bronchoalveolar lavage

BTS British thoracic society

Ca²⁺ Calcium

CF Cystic fibrosis

cGMP Cyclic guanosine monophosphate

CO₂ Carbon dioxide

COPD Chronic obstructive pulmonary disease

CT Computed tomography

DNA Di nucleic acid

DPB Diffuse panbronchiolitis

ECP Eosinophil cationic protein

EDRF Endothelium derived relaxing fctor

EGF Epidermal growth factor

eNANC Excitatory non adrenergic non cholinergic

ENO Exhaled nitric oxide

eNOS Endothelial nitric oxide synthase

EPO Eosinophil peroxidase

ET-1 Endothelin-1

ETS Environmental tobacco smoke

FEF₂₅₋₇₅ Forced expiratory flow 25-75

FEV₁ Forced expiratory volume in the first second

FMN Flavin mononucleotide

FVC Forced vital capacity

GM-CSF Granulocyte-macrophage colony stimulating

factor

H₂O₂ Hydrogen peroxide

H₄B Tetrahydroprotein

HDM House dust mites

IFN-γ Interferone-γ

IgE Immunoglobulin E

IL-10 Interleukin-10

IL-12 Interleukin-12

IL2 Interleukin-2

IL4 Interleukin-4

IL5 Interleukin-5

IL-8 Interleukin-8

iNANC Inhibitory non-adrenergic non-cholinergic

iNOS inducible nitric oxide synthase

IV Intravenous

LAA Laboratory animal allergy

L-NAME N^G-nitro-L—arginine methyl ester

LTB4 Leukotrien B4

MBP Major basic protein

MCP-1 Macrophage chemotactic protein-1

MIP- 1α Macrophage inflammatory protein $1-\alpha$

mRNA Messenger ribonucleic acid

NADPH Nicotinamide adenine dinucleotide phosphate

NANC Non-adrenergic non-cholinergic

NK Natural killer

NMDA N-methnyl-D-aspartate

nNOS Neuronal nitric oxide synthase

NO Nitric oxide

NO₂ Nitrate

NO₂ Nitrogen dioxide

NO₃ Nitrite

NOS Nitric oxide synthase

O₃ Ozone

oNOO Peroxynitrite

PaCO₂ Partial pressure of oxygen in arterial blood

PaO₂ Partial pressure of arterial CO₂

PCD Priamry ciliary dyskinesia

PEF Peak expiratory flow

PEFR Peak expiratory flow rate

RS-NO Nitrosothiols

SLP Secretory leukoproteinase inhibitor

TGF-B Transforming growth factor-B

TIMP₅ Tissue inhibitors of MMP₅

TNF Tumor necrosis factor-α

US United States

VC Vital capacity

VCAM-1 Vascular cell adhesion molecule-1

VIP Vasoactive intestinal peptide

WHO World Health Organization

LIST OF FIGURES

No	Title	Page
1	Pathogenesis of COPD	16
2	Formation of nitric oxide	51
3	Chemical reactions of nitric oxide	60
4	Action of nitric oxide	61
5	The Flowmate spirometer	111
6	The personal sampler	112
7	The American Agency Mass Control	113
8	Nitric oxide assay procedure	116
9	Comparison between healthy smokers group	124
	(A) and control group (C) regarding the mean	
	value of exhaled nitric oxide.	
10	Linear regression analysis showing significant	125
	negative correlation between pack/year in the	
	group of healthy smokers (A) and mean value	
	of exhaled NO	
11	Comparison between subgroup of COPD	126
	patients during exacerbation (subgroup B ₁) and	
	control group (C) regarding the mean value of	
	exhaled nitric oxide	
12	Comparison between COPD patients during	128
	remission (Subgroup B ₂) and subgroup of	
	COPD patients during exacerbation (subgroup	
	B ₁) regarding the mean value of exhaled nitric	
	oxide.	

No	Title	Page
13	Comparison between smokers and ex-smokers	129
	in the subgroup of COPD patients during	
	remission (subgroup B ₂) regarding exhaled NO	
	value.	
14	Comparison between the healthy smokers	130
	group (A) and subgroup of COPD during	
	exacerbation (subgroup B ₂) regarding the mean	
	value of exhaled nitric oxide	
15	Linear regression analysis showing significant	131
	negative correlation between the mean value of	
	exhaled Nitric Oxide in the subgroup of	
	patients during exacerbation (subgroup B ₁) and	
	FEV ₁).	
16	Linear regression analysis showing significant	132
	negative correlation between the mean value of	
	exhaled NO and FEV ₁ % predicted in the ex-	
	smokers of subgroup of COPD patients during	
	remission (subgroup B ₂).	
17	Linear regression analysis showing significant	133
	negative correlation between the mean value of	
	exhaled NO and FEV ₁ % predicted in the	
	smokers of subgroup of COPD patients during	
	remission (subgroup B ₂).	

LIST OF TABLES

No	Title	Page
1	Sites of Inflammatory cell increases in COPD	17
2	Gold W.M Classification	43
3	Staging of COPD according to BTS	45
4	GOLD staging of COPD	46
5	GOLD staging of COPD	47
6	Characteristics of NOS isoforms	57
7	Age distribution among the studied groups	122
8	Results of the mean value of exhaled nitric	122
	oxide among the studied groups	
9	Results of the mean value of FEV ₁ % predicted	123
	among the studied groups.	
10	Comparison between healthy smokers group	124
	(A) and control group (C) regarding the mean	
	value of exhaled nitric oxide.	
11	Comparison between subgroup of COPD	126
	patients during exacerbation (subgroup B ₁) and	
	control group (C) regarding the mean value of	
	exhaled nitric oxide	
12	Comparison between COPD patients during	127
	remission (Subgroup B ₂) and control group (C)	
	regarding the mean value of exhaled NO	

No	Title	Page
13	Comparison between COPD patients during remission (Subgroup B ₂) and subgroup of	128
	COPD patients during exacerbation (subgroup	
	B_1) regarding the mean value of exhaled nitric oxide.	
14	Comparison between smokers and ex-smokers in the subgroup of COPD patients during remission (subgroup B ₂) regarding exhaled NO value.	129
15	Comparison between the healthy smokers group (A) and subgroup of COPD during exacerbation (subgroup B_2) regarding the mean value of exhaled nitric oxide	130

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a major health problem. It is the fourth leading cause of chronic morbidity and mortality in the United States. COPD is a disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Symptoms, functional abnormalities, and complications of COPD can all be explained on the basis on this underlying inflammation and the resulting pathology (Global Initiative for Chronic Obstructive Lung Disease, 2004).

Chronic inflammation is a critical feature of chronic obstructive pulmonary disease, cystic fibrosis, and asthma. This inflammation is associated with the increased production of reactive oxygen species or oxidative stress in the lungs. Oxidative stress may have several adverse effects and may amplify the inflammatory process; however, monitoring oxidative stress is difficult and may not be reflected by changes in blood markers. Therefore they developed several noninvasive markers in the exhaled breath that may indicate oxidative stress in the lungs, and studied these in relationship to the severity of chronic inflammatory lung diseases. They analyzed the exhaled breath for the content of nitric oxide as a marker of inflammation (*Paredi et al.*, 2002).

In the past nitric oxide (NO) was regarded exclusively as an atmospheric contaminant. Currently, however, it is

thought to play an important endogenous signaling role in the physiological control of airway diseases (*Gaston et al.*, 1994).

NO is produced endogenously in the human respiratory tract where it can act as a dilator of bronchial and vascular smooth muscle, a neurotransmitter and an immune response mediator (*Moncada et al.*, 1991).

Measurement of NO in exhaled air is a simple method of investigating endogenous NO production (*Gustafsson et al.*, 1991).

NO is synthesized by various pulmonary cells, including epithelial, endothelial cells and infiltrating inflammatory cells. NO can easily be measured in exhaled air, Where its concentration depends on local production by the respiratory system (*Rolla et al.*, 2000).

Exhaled NO is a well-studied marker of airway inflammation and oxidative stress and is decreased in healthy chronic smokers (*Kharitonov et al., 1995*). Exhaled NO is also increased during COPD exacerbations; whereas conflicting results have been reported in stable COPD patients. Moreover, The levels of exhaled NO were significantly correlated with lung function as assessed by FEV₁ (*Maziak et al., 1998*).

Exhaled NO levels- in COPD may be correlated with disease severity (*Clini et al.*, 1998)

AIM OF THE WORK

Measurement of NO concentration in the exhaled breath of patients with chronic obstructive pulmonary disease and its value as a noninvasive marker of airway inflammation and to correlate between it and pulmonary function tests.