

A TRAVELLING WAVES-BASED FAULT LOCATION SCHEME FOR MULTI-TAPPED OVERHEAD DISTRIBUTION SYSTEMS

By

Mahmoud Abd EL Fattah Mahmoud

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

A TRAVELLING WAVES-BASED FAULT LOCATION SCHEME FOR MULTI-TAPPED OVERHEAD DISTRIBUTION SYSTEMS

By

Mahmoud Abd EL Fattah Mahmoud

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Mahmoud Ibrahim

Gilany

Associate Prof. Dr. Doaa Khalil Ibrahim

Faculty of Engineering,

Cairo University

Electrical Power and Machines Department Faculty of Engineering,

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

TRAVELLING WAVES-BASED FAULT LOCATION SCHEME FOR MULTI-TAPPED OVERHEAD DISTRIBUTION SYSTEMS

By

Mahmoud Abd EL Fattah Mahmoud

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the

Examining Committee:

Prof. Dr. Mahmoud Ibrahim Gilany Thes

Thesis main advisor

Associate Prof. Dr. Doaa Khalil Ibrahim

Member

Prof. Dr. Essam El-Din Abou El-Zahab

Internal Examiner

Prof. Dr. Nabil Hassan Mahmoud Abbasy

External Examiner

Faculty of Engineering, Alexandria University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2017

Engineer: Mahmoud Abd EL Fattah Mahmoud

Date of Birth: 24 / 11 / 1989
Nationality: Egyptian

E-mail: Mahmoud231@hotmail.com

Phone.: +201224763672

Address: Dokki – Giza – Egypt

Registration Date: 01 / 10 / 2012 Awarding Date: / / 2017 Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Mahmoud Ibrahim Gilany

Associate Prof. Dr. Doaa Khalil Ibrahim

Examiners: Prof. Dr. Mahmoud Ibrahim Gilany

Associate Prof. Dr. Doaa Khalil Ibrahim Prof. Dr. Essam El-Din Abou El-Zahab Prof. Dr. Nabil Hassan Mahmoud Abbasy

(Faculty of Engineering, Alexandria University)

TITLE OF THESIS: A TRAVELLING WAVES-BASED FAULT LOCATION SCHEME FOR MULTI-TAPPED OVERHEAD DISTRIBUTION SYSTEMS

Key Words: Characteristic Frequency, Distribution Network, Fast Fourier Transform (FFT), Fault Location, Clarke transformation, Travelling Waves.

Summary:

In this thesis, a digital protection technique is implemented for MV overhead distribution network using voltage signals only at MV substation. The proposed scheme utilize an automation system which depends on installing fault passage indicators at strategic points to identify the faulted section. The exact fault distance is determined through two phases. The first one is representing the network by a set of equations. Each equation belongs to specific path and fault type; as a relation between the distance between substation and fault point and the generated frequency observed at the substation. The other phase is the substituting by the obtained frequency in the appropriate equation.

The proposed scheme is extensively examined on a typical 22 kV distribution network. Different faults are simulated at different positions on main feeder and laterals to evaluate the accuracy of the proposed algorithm not only for various fault resistance, inception angle, and load level but also in case of changing in network topology. The final results demonstrate accurate fault location estimation for distribution systems.

ACKNOWLEDGMENTS

First of all, thanks to Allah who supported and strengthened me in all of my life and in completing my studies for the Master of Science (M.Sc.) degree.

I would like deeply to express my thanks and gratitude to my supervisors; Prof. Dr. Mahmoud Gilany and Associate Prof. Dr. Doaa Khalil Ibrahim, Electrical Power and Machines Department, Faculty of Engineering, Cairo University for their faithful supervision, enormous efforts, and their great patience during the period of the research.

Finally, I would like to thank my family for their great inspiration, kind support, and continuous encouragement.

TABLE OF CONTENTS

ACKNO	OWLE	DGMENTS	i
TABLE	E OF C	ONTENTS	ii
LIST O	F TAB	SLES	V
LIST O	F FIG	URES	vi
LIST O	F SYM	IBOLS AND ABBREVIATIONS	X
ABSTR	RACT	•••••	XV
CHAPT	TER (1)): INTRODUCTION	
1.1.	` ′	Noltage Distribution Networks	
1.2.		ition Network Configuration	
1.2.1		e components of overhead radial distribution network	
1.3.		on in Distribution networks	
1.3.1	1. Pro	otection equipment in distribution network	4
1.	3.1.1.	Protective relays	4
1.	3.1.2.	Circuit breakers	4
1.	3.1.3.	Reclosers	4
1.	3.1.4.	Fuses	4
1.	3.1.5.	Sectionalizer	4
1.3.2	2. Fai	ult location techniques	5
1.3.3	3. Pro	otective relays versus fault locators	6
1.4.	Present	Fault Location Techniques	7
1.5.	Researc	h Efforts for Fault Location in Distribution Systems	8
1.6.	Problem	n Statement	8
1.7.	Thesis (Objectives	10
1.8.	Thesis (Organization	10
	` '): LITERATURE REVIEW ON FAULT	
TECHN		S IN DISTRIBUTION SYSTEMS	
2.1.		Nature and Types	
2.1.1		ults causes	
2.1.2		ults types	
2.2.		s of Fault Location Estimation	
2.2.1		ne and effort saving	
2.2.2		proving the system availability	
2.2.3		sisting future maintenance plans	
2.2.4		onomic factor	
2.3.		re Survey for Fault Location Algorithms	
2.3.1	1. Im	pedance-Based methods	15

2.3.2.	Travelling wave-Based methods	17
2.3.2.1	1. Type A locators	18
2.3.2.2	2. Type D locators	19
2.3.2.3	3. Type E locators	20
2.3.3.	Recent travelling wave techniques	21
2.3.3.1	1. Multi-end fault location algorithms	21
2.3.3.2	2. Double-end fault location algorithms	24
2.3.3.3	3. Single-end fault location algorithms	27
2.3.4.	Comparison of the main characteristics of recent travelling wave technic	ques 33
	R (3): BASIC CONCEPTS TO IMPLEMENT D SCHEME	
	lines of the Proposed Methodology	
	ic Concepts Related to the Proposed Scheme	
3.2.1.	Distribution automation system	
3.2.2.	Travelling waves on distribution line	
3.2.2.1	-	
3.2.2.2	•	
3.2.2.3	Reflection and refraction of travelling waves	43
3.2.3.	Phase and modal transformation	45
3.2.4.	Fourier analysis	46
3.2.4.1	1. Discrete Fourier Transform (DFT)	50
3.2.4.2	2. Fast Fourier Transform (FFT)	51
3.2.5.	Characteristic path frequency	55
	neral Considerations in Tested Network Simulation and Proposed Scheme	
3.3.1.	Transformer modeling	57
3.3.2.	Line modeling	58
3.3.3.	Curve fitting	59
	R (4): IMPLEMENTING THE PROPOSED FA	
	Proposed Scheme Description	
	ted Case Study Description	
4.3. Imp	plementing Calculations of the Proposed Scheme	67
4.3.1.	Distribution of FPI devices	67
4.3.2.	Generating equations	68
4.3.2.1	1. Filter implementation	68
4.3.2.2	2. Frequency resolution implementation	71
	R (5): EVALUATING THE PERFORMANCE OF ID FAULT LOCATION SCHEME AND ACHIE	
RESULTS		

5.1.	The Effect of Fault Resistance	80
5.2.	The Effect of Inception Angles	82
5.3.	Various Load Levels	84
5.4.	Change in Network Topology	85
5.5.	Change in Load Nature	86
5.6.	Scheme Response for Laterals Faults	87
CHAP	TER (6): CONCLUSIONS AND SUGGESTED FUTUR	E WORK
	•••••	89
6.1.	Conclusions	
6.2.	Main Features of the Proposed Scheme	90
6.3.	Limitation of the Proposed Scheme	90
6.4.	Suggestions for Future Work	90
REFEI	RENCES	91
PUBLI	SHED WORK	96
APPE	NDIX (A): MATLAB CALCULATION M-FILE	97
	NDIX (B): EQUATIONS REPRESENT THE LATERAL ED NETWORK	

LIST OF TABLES

Table 2.1: Occurrence percentage of fault types	13
Table 2.2: Main characteristics of the ten compared methods [38]	17
Table 2.3: Main characteristics of travelling wave fault location techniques	34
Table 3.1: The response of the implemented FPI [45]	40
Table 3.2: Comparison between DFT and FFT algorithms [62]	54
Table 3.3: Constant values of SATTRAFO transformer model	57
Table 4.1: Clarke components used for each fault type	62
Table 4.2: Electrical parameters of the network	66
Table 4.3: Conductor parameter	66
Table 4.4: Loading data	66
Table 4.5: Transformers parameters	67
Table 4.6: Calculated transformers modeling data	67
Table 5.1: Locating SLG faults along main feeder at various value of fault	
resistance	81
Table 5.2: Locating DLG faults along main feeder at various value of fault	
resistance	82
Table 5.3: Locating SLG faults along main feeder at various inception angle	83
Table 5.4: Locating DLG faults along main feeder at various inception angle	84
Table 5.5: Locating SLG faults along main feeder at various load level	85
Table 5.6: Locating DLG faults along main feeder at various load level	85
Table 5.7: Locating faults along main feeder when the lateral 5 is disconnected	ed
	86
Table 5.8: New loading data at 0.8 power factor and 50 % of load 3	86
Table 5.9: Locating faults along main feeder when loads nature is changed	86
Table 5.10: Locating SLG faults at different laterals for different fault	
conditions	87
Table 5.11: Locating DLG faults at different laterals for different fault	
conditions	88

LIST OF FIGURES

Figure 1.1: Power system main components [1]	. 1
Figure 1.2: 11 kV real Egyptian distribution rural network	2
Figure 1.3: 24.4 kV IEEE distribution 34 nodes test feeder	3
Figure 1.4: Pole transformer type	3
Figure 1.5: Typical 22 kV distribution network	9
Figure 2.1: Accumulated water on insulator surface	12
Figure 2.2: Fault types	14
Figure 2.3: Classification of fault location methods	15
Figure 2.4: Type A fault locator and its lattice diagram	19
Figure 2.5: Type D fault locator and its lattice diagram	19
Figure 2.6: Type E fault locator and its lattice diagram	20
Figure 2.7: Block diagram of an observer unit	22
Figure 2.8: Flowchart of the technique introduced in [16]	22
Figure 2.9: Block diagram of the technique introduced in [17]	23
Figure 2.10: Block diagram of the technique proposed in [25]	24
Figure 2.11: Block diagram of the fault locator used in [19]	25
Figure 2.12: Lattice diagram of the technique proposed in [19]	26
Figure 2.13: Locator output at busbar R for the lattice diagram of the technique	ıe
introduced in [19]	26
Figure 2.14: Locator output at busbar S for the lattice diagram of the technique	ıe
introduced in [19]	26
Figure 2.15: Flowchart of the proposed technique in [20]	27
Figure 2.16: I _A +I _C module current travelling wave in [23]	28
Figure 2.17: Discrete wavelet transform results for [23]	29
Figure 2.18: Flowchart of the technique proposed in [26]	30
Figure 2.19: Arial mode 1 of voltage signal during a fault	31
Figure 2.20: Generated mother wavelet from voltage signal in the proposed	
method of [27]	31

Figure 2.21: Improved estimation of the characteristic frequency in [28] (dot	ted
line is the estimated frequency in step 1)	. 32
Figure 3.1: The block diagram of the essential concepts related to the propos	ed
scheme	. 35
Figure 3.2: The structure of the Chapter	. 36
Figure 3.3: The installed FPI on an overhead feeder	. 37
Figure 3.4: The installed FPI at strategic points on overhead feeders	. 38
Figure 3.5: Symantec diagram of distribution automation system	. 38
Figure 3.6: Response of installed FPIs during faults	. 39
Figure 3.7: The response of the implemented FPI [45]	. 39
Figure 3.8: Single phase line model	. 41
Figure 3.9: Reflection and refraction of travelling wave at a transition point.	. 44
Figure 3.10: Representation of a sine wave in time and frequency domain	. 46
Figure 3.11: Composing a nonsinusoidal signal by summing sinusoidals	. 47
Figure 3.12: Frequency spectrum of the nonsinusoidal signal of Figure 3.11.	. 47
Figure 3.13: Continuous periodic waveform	. 48
Figure 3.14: Continuous aperiodic waveform	. 48
Figure 3.15: Discrete periodic waveform	. 48
Figure 3.16: Discrete aperiodic waveform	. 48
Figure 3.17: The general block diagram of DFT analyzer	. 49
Figure 3.18: Aliased Fourier transform of a waveform sampled at an	
inappropriate rate	. 49
Figure 3.19: Constructed signal of a waveform sampled at an appropriate rate	e
	. 50
Figure 3.20: The frequency resolution of the frequency spectrum	. 51
Figure 3.21: The basic concept of FFT algorithm	. 52
Figure 3.22: Decomposing of 8-point signal to 8 signals	. 52
Figure 3.23: The basic butterfly computation [61]	. 53
Figure 3.24: Three stages in the computation of an $N = 8$ -point DFT [61]	. 53
Figure 3.25: Eight-point decimation FFT algorithm [62]	. 54

Figure 3.26: Comparison between number of operations for DFT and FFT
algorithms [56]
Figure 3.27: Tested distribution network shows some paths for generated
travelling wave due to a fault at the end of line 10
Figure 3.28: The difference between interpolation and curve fitting 60
Figure 3.29: Straight and parabolic lines approximation
Figure 4.1: Flowchart for generating network equations during training phase63
Figure 4.2: Flowchart of applying the proposed scheme in the operating phase
64
Figure 4.3: Tested distribution network to validate the proposed scheme 65
Figure 4.4: Tower configuration
Figure 4.5: Distribution of FPI devices on the tested network
Figure 4.6: 0 mode of voltage signals before using a filter
Figure 4.7: Frequency spectrum before using a filter
Figure 4.8: 0 mode of voltage signals after using a filter
Figure 4.9: Frequency spectrum after using a filter
Figure 4.10: Frequency spectrum for DLG fault at 9.7 km on main feeder at
$\Delta F = 122 \text{ Hz/bin} \dots 72$
Figure 4.11: Frequency spectrum for DLG fault at 9.8 km on main feeder at
$\Delta F = 122 \text{ Hz/bin}72$
Figure 4.12: Frequency spectrum for DLG fault at 9.9 km on main feeder at
$\Delta F = 122 \text{ Hz/bin}73$
Figure 4.13: Frequency spectrum for DLG fault at 9.7 km on main feeder at
$\Delta F = 61 \text{ Hz/bin} \dots 73$
Figure 4.14: Frequency spectrum for DLG fault at 9.8 km on main feeder at
$\Delta F = 61 \text{ Hz/bin} \dots 74$
Figure 4.15: Frequency spectrum for DLG fault at 9.9 km on main feeder at
$\Delta F = 61 \text{ Hz/bin} \dots 74$
Figure 4.16: Frequency spectrum for DLG fault at 2 km on main feeder 75
Figure 4.17: Frequency spectrum for DLG fault at 3.5 km on main feeder 75
Figure 4.18: Frequency spectrum for DLG fault at 5 km on main feeder 76

Figure 4.19: Frequency spectrum for DLG fault at 8 km on main feeder	76
Figure 4.20: Frequency spectrum for DLG fault at 10 km on main feeder	77
Figure 4.21: Relation between fault distance along the main feeder and	
frequency in case of SLG faults	78
Figure 4.22: Relation between fault distance along the main feeder and	
frequency in case of DLG faults	79

LIST OF SYMBOLS AND ABBREVIATIONS

• Symbols

C : Capacitance of line per unit length.

F₀ : Flux (Wb-turn) at steady state.

G : Conductance of line per unit length.

I₀ : Current through magnetizing branch at steady state in (A).

I_m : Modal current.

L : Inductance of line per unit length.

L_p : Transformer inductance in primary winding in (mH).

 L_{sec} : Inductance of the secondary side of SATTRAFO model.

R : Resistance of line per unit length.

R_m : Resistance in magnetizing branch in (ohm).

R_p : Resistance in primary winding in (ohm).

 R_{sec} : Resistance of the secondary side of SATTRAFO model.

 t_{r1} : Arrival instant of V_{r1} at busbar R.

 t_{r2} : Detected instant of V_{r2} at busbar R.

 t_{s1} : Arrival instant of V_{s1} at busbar S.

 t_{s2} : Detected instant of V_{s2} at busbar R.

V_m : Modal voltage.

V_{nim} : Peak voltage of the primary side of SATTRAFO model.

 V_{r_1} : Generated travelling wave propagates towards busbar R.

 V_{r2} : Reflection travelling wave of Vr1 at fault point.

 V_{s1} : Generated travelling wave propagates towards busbar S.

 V_{s2} : Reflection of Vr1 at remote busbar R.

V_{sec} : Peak voltage of the secondary side of SATTRAFO model.

Z_c : Surge impedance.

 Δt_{1-0} : Time difference between the arrival time of zero mode and aerial

mode.

 Δt_f : Arrival time difference between substation detector and the detector at

terminal of the faulted line.

 Δt_m : Time differences between local maximum of signal coefficients.

 Δt_{mn} : Arrival time difference between two the measuring points.

 F_n : Nyquist frequency.

 F_s : Sampling frequency.

 V_r : Reflected wave.

 V_{rp} : Root mean square voltage of the primary side of the transformer.

 V_{rs} : Root mean square voltage of the secondary side of the transformer.

 Z_T : Transformer impedance.

 $Z_{c2} \& Z_{c1}$: Characteristic impedances on the either side of transition point.

 f_{im} : Improved value of characteristic path frequencies related to fault point.

 f_p : Characteristic frequency corresponding to specific fault distance.

l_b: Distance between the two busbars S and R.

 l_f : Distance between the substation and the end of the faulted line.

 l_m : Distance between two measuring points.

 n_p : Number of times required for a travelling wave to propagate along path

(p) before get again the same polarity.

 t_1 : Instant that the first generated wave due to fault point is observed at

locator in second.

t₂: Instant that the first reflected wave from the fault point is observed at

locator in second.

 t_A : Instant that the first generated wave is observed at terminal A in

second.

 t_B : Instant that the first generated wave is observed at terminal B in

second.

 t_C : Instant that the wave is generated by closing the circuit breaker in

second.

 t_R : Instant that the reflected wave is observed at terminal A in second.

 v_0 : Velocity of the zero mode.

 v_1 : Velocity of the first aerial mode.

 v_{τ} : Transmitted wave.

 ρ_{ri} : Current reflection coefficient.

 ρ_{rv} : Voltage refection coefficient.

Ø : Generated magnetic flux.