The effect of Platelet Rich Fibrin on the Healing of Autogenous Bone Grafts in Mandibular Reconstruction

Thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University in Partial Fulfillment of the Requirements for The Doctor Degree in Oral and Maxillofacial Surgery

By

Abdullah Hassan Thabet Farhan B.D.S (Sana'a University) 2003 M.D.S (Cairo University) 2009

Lecturer of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine, Sana'a University

Oral and Maxillofacial Surgery Department
Faculty of Oral and Dental Medicine
Cairo University
-2013-

SUPERVISORS

Professor Dr / Galal Beheri

Professor of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine
Cairo University

Dr/ Tareq Al Ghareb

Lecturer of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine
Cairo University

بِسِيْ مِٱللَّهِٱلرَّحْمَزِٱلرَّحِي مِ

((وعلمك ما لم تكن تعلم وكان فضل الله عليك عظيماً))

صدق الله العظيم سورة النساء الاية 113

Acknowledgment

Words fail to express my feeling of gratitude and deep appreciation to **Professor. Dr. Mohammed GalaL Beheri**, Professor of Oral and Maxillofacial Surgery, Oral and Maxillofacial Surgery department, Faculty of Oral and Dental Medicine, Cairo University, for his support, continuous teaching and fatherly guidance during this study.

Also the words are not enough to express my sincere appreciation and genuine gratitude to **Dr. Tareq Al ghareb**, Lecturer of Oral and Maxillofacial Surgery, Oral and Maxillofacial Surgery department, Faculty of Oral and Dental Medicine, Cairo University, for her patience and beneficial advice and continuous constructive supervision throughout the whole study.

My thanks extend to all staff and members of oral and maxillofacial surgery department, Faculty of Oral and Dental Medicine, Cairo University, for their considerable cooperation, kind feeling and supports.

Dedication

To my big family, my father, my mother and brothers and sisters and to my small family, my dear wife and my kids for being so patient and supportive during my study.

Table of contents

Contents	I
List of Tables	II
List of Figures	III
List of abbreviations	V
Introduction	1
Review of literature	3
Aim of the study	29
Patients and Methods	30
Results	49
Discussion	74
Summary	84
Conclusion	85
Refrences	86

List of Tables

Table (1)	The mean, standard deviation (SD) values and results of Student's t-test for comparison between age values in the two groups	51
Table (2)	The frequencies (n), percentages (%) and results of chi- square test for the comparison between gender distributions in the two groups	52
Table (3)	The frequencies (n), percentages (%) and results of chi- square test for the comparison between defect sites in the two groups	53
Table (4)	The mean, standard deviation (SD) values and results of Student's t-test for comparison between defect size values in the two groups	54
Table (5)	The mean, standard deviation (SD) values and results of Student's t-test for comparison between platelet counts in the two groups	55
Table (6)	The frequencies (n), percentages (%) and results of chi- square test for the comparison between presence of infection in the two groups	56
Table (7)	The mean, standard deviation (SD) values and results of	57

	Mann-Whitney U test for comparison between pain scores in	
	the two groups	
	The mean, standard deviation (SD) values and results of	
Table (8)	Wilcoxon signed-rank test for the changes by time in pain of	58
	control group	
	The mean, standard deviation (SD) values and results of	
Table (9)	Wilcoxon signed-rank test for the changes by time in pain of	59
	experimental group	
	The mean, standard deviation (SD) values and results of	
Table (10)	Mann-Whitney U test for comparison between % decreases	60
	in pain scores of the two groups	
	The mean, standard deviation (SD) values and results of	
Table (11)	Student's t-test for comparison between bone density values	62
	in the two groups	
	The mean, standard deviation (SD) values and results of	
Table (12)	paired t-test for the changes by time in bone density of	63
	control group	
	The mean, standard deviation (SD) values and results of	
Table (13)	paired t-test for the changes by time in bone density of	64
	experimental group	
	The mean, standard deviation (SD) values and results of	
Table (14)	Mann-Whitney U test for comparison between % decreases	65
	in bone density of the two groups	
	The mean, standard deviation (SD) values and results of	
Table (15)	Student's t-test for comparison between bone volume values	68
	in the two groups	
L		

Table (16)	The mean, standard deviation (SD) values and results of paired t-test for the changes by time in bone volume of control group	69
Table (17)	The mean, standard deviation (SD) values and results of paired t-test for the changes by time in bone volume of experimental group	70
Table (18)	The mean, standard deviation (SD) values and results of Mann-Whitney U test for comparison between % decreases in bone volume of the two groups	71

List of figures

Fig (1)	Boyd's calssifiaction system	6
Fig (2)	The anatomy of the iliac crest and important related muscles	13
Fig (3)	schematic summary of the growth factor rule during healing	24
Fig (4)	The ultrastructure of the PRF (1) Cytokine intrinsically retained	
	within fibrin fibrillae. (2) Platelet cytokine in solution(3)	
	Fibrin-associated glycanic chains. (4) Circulating glycoproteins	27
	(fibronectin). (5) Fibrin fibrilla associated with glycanic chains	
	and intrinsic cytokines	
Fig (5)	Patient lying supine on operating table draped with surgical	
	draps	32
Fig (6)	The skin, sub cutaneous tissues and the platysma are elevated	
rig (0)		33
	showing the superficial layer of deep cervical fascia	
Fig (7)	Dissection through the superficial layer of the deep cervical	34
	fascia and identification of the facial artery and vessels	
Fig (8)	Ligation of the facial artery and vien	35
Fig (9)	The bony defect and the reconstruction plate are exposed and	35
	the size of defect is measured clinically	33
Fig (10)	Routine draping for harvesting anterior iliac crest graft.	36
Fig (11)	Skin incision over the anterior iliac area	36
Fig (12)	Incision over the scarpa's fascia	37
Fig (13)	The exposed anterior iliac crest	38
Fig (14)	The armamentarieum used in harvesting the bone graft	38

Fig (15)	Bone harvesting from the iliac crest using bone chisel	39
Fig (16)	The bone graft stored in normal saline after been harvested	39
Fig (17)	Vacutainers used in the preparation of the PRF	40
Fig (18)	centrifeuge used in the preparation of the PRF	40
Fig (19)	The PRF is removed from the vacutainer and the blood clot is removed from the PRF	41
Fig (20)	The four PRF are ready inside a sterile container	41
Fig (21)	the autogenous bone crib in the form of J shape	42
Fig (22)	Bone mill	43
Fig (23)	the condensed corticocancellous bone graft	43
Fig (24)	The crib fixed to the reconstruction plate.	44
Fig (25)	The corticocancellous bone graft is condensed into the crib	44
Fig (26)	The PRF membrane is applied to the graft	45
Fig (27)	wound is closed in layers and drains are placed and wound dressing is put	46
Fig (28)	Panoramic view formatted from immediate postoperative CT using Mimics software.	28
Fig (29)	Bar chart representing mean age values in the two groups	51
Fig (30)	Bar chart representing gender distributions in the two groups	52
Fig (31)	Bar chart representing defect sites in the two groups	53
Fig (32)	Bar chart representing mean defect size values in the two	53
	groups	
Fig (33)	Bar chart representing mean platelet counts in the two groups	55
Fig (34)	Bar chart representing presence of infection in the two groups	56

Fig (35)	Bar chart representing mean pain scores in the two groups	57
Fig (36)	Line chart representing changes by time in mean pain scores of the two groups	59
Fig (37)	Bar chart representing mean % decreases in pain scores of the two groups	61
Fig (38)	Bar chart representing mean bone density values in the two groups	62
Fig (39)	Line chart representing changes by time in mean bone density of the two groups	64
Fig (40)	Bar chart representing mean % decreases in bone density of the two groups	66
Fig (41)	bone density measurement after 3 months using the mimics software	66
Fig (42)	bone density measurement after 6 months using the mimics software	66
Fig (43)	Bar chart representing mean bone volume values in the two groups	68
Fig (44)	Line chart representing changes by time in mean bone volume of the two groups	70
Fig (45)	Bar chart representing mean % decreases in bone volume of the two groups	72
Fig (46)	the mimic's software platform showing the graft being isolated from the remaining bones during volume measurment	72

List of abbreviations

AIS	Anterior iliac spine
BMP	Bone morphogenetic protein
CBCT	Cone beam computed tomography
CT	computed tomography
FEA	Fine element analysis
FGF	Fibroblast growth factor
FGFR	Fibroblast growth factor receptor
GDFs	Growth and differentiation factors
IL	Interleukin
IGF	Insulin growth factor
MRI	Magnetic reasoning imaging
MSCs	Mesechymal stem cells
PDGF	Platelet derived growth factors
PRF	Platelet rich fibrin
PRP	Platelet rich plasma
TGF	Transforming growth factor
TNF	Tumor necrosis factor

Introduction

The need for reconstruction of body defects is an essential rule of any heath care providers especially surgeons and it has evolved through the late years of the 19th century and the beginning of the 20th century driven by the challenges of wars and assisted by the general advancement in the medical field through years.

The goal of any reconstructive surgery is to replace bone and soft tissue loss in such a fashion that function and esthetics approach their preablative levels. In so doing, the benefits of surgical reconstruction should equal or surpass the patient's quality of life without the reconstruction and avoid complications and deformities that may reduce their quality of life⁽¹⁾.

Reconstruction of the jaws because of trauma or congenital defects or after removal of pathological lesions poses a challenge to the oral and maxillofacial surgeons because of the complex anatomy of the area and the functional requirements that must be satisfied⁽²⁾.

There are three important factors that play a role in the overall success of any reconstruction in the jaws. First, rigid fixation of the graft Second, adequate soft tissue to guarantee coverage and good blood supply, Third, the volume and contour of the reconstructed bone should mimic the original or desired volume and contour of the resected or missing part as close as possible⁽³⁾.

Bone as a tissue has the capacity of postnatal self-reconstruction, in small defects bone can heel without the need of any grafts. However, with large defects To restore structural and functional integrity, either autografts or allogenic bone are required.⁽⁴⁾

Bone heals in a complex cascade of biological events, regulated by specific cells, the extracellular matrix and distinct growth factors .So bone healing process may be further stimulated and supported by the biomechanical delivery of growth factors that have a role in its healing for a longer period and higher concentrations⁽⁵⁾.

Platelets contains a variety of growth factors that plays a rule in bone healing Several technique since Ross et al⁽⁶⁾ has shown the ability and the efficacy to use this growth factors to augment tissue healing has been developed to directly deliver this growth factors into the required sites.

At the beginning of 2006 chockroun et al⁽⁷⁾ developed a method to concentrate and deliver those growth factors and called it platelet rich fibrin the major benefits of this new method beside that it gives us the growth factors in the form of membrane which can be adapted directly on the bone graft, it is very simple in preparation, non time consuming and it is a reproducible method.

This thesis will examine the effect of the platelet rich fibrin on the healing of corticocancellous bone grafts in reconstruction of the mandible.