

BY

Eng. Hussein Adel Taha Hussein

A Thesis Submitted to The
Faculty of Engineering at Cairo University
In Partial Fulfilment of The
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

 \mathbf{BY}

Eng. Hussein Adel Taha Hussein

A Thesis Submitted to The
Faculty of Engineering at Cairo University
In Partial Fulfilment of The
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2014

BY

Eng. Hussein Adel Taha Hussein

A Thesis Submitted to The
Faculty of Engineering at Cairo University
In Partial Fulfilment of The
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

Under supervision of

Prof. Dr. Mohamed Ahmed Moustafa Hassan

Electrical Power and Machine Dept.

Faculty of Engineering

Cairo University

Dr. Mohammed El-Sayed Ammar

Electrical Power and Machine Dept.

Faculty of Engineering

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

BY

Eng. Hussein Adel Taha Hussein

A Thesis Submitted to The
Faculty of Engineering at Cairo University
In Partial Fulfilment of The
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the

Examining committee:

Prof. Dr. Adel Dya El-dine Shaltoot

Faculty of Engineering

Cairo University

Prof. Dr. Mohsan Zaki El-Shreif

Faculty of Engineering

Banha University

Prof. Dr. Mohamed Ahmed Moustafa Hassan

Faculty of Engineering

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

ACKNOWLEDGMENT

First of all, I would like to express my deep gratitude to Allah. I really appreciate my supervisors' guidance of Prof. Mohamed Ahmed Moustafa Hassan and Dr. Mohammed El-Sayed Ammar. I'm grateful for their support through the research work and thesis writing. They added to my research experience.

I would like to thank my friends Eng. Emad Fathy and Eng. Ramdan Ragab for their support in the machine modeling.

Most of all, I'm in debit to my parents for supporting and encouraging, I'm grateful to my sisters, my brother and my uncle Yasser for their support. I'm glad to have my lovely family.

TABLE OF CONTENTS

Title		Page
Acknowled	lgment	i
Table Of C	contents	ii
List Of Tab	oles	v
List Of Fig	ures	vi
List Of Syn	nbols	viii
List Of Abl	breviations And Definitions	ix
Abstract		1
Chapter On	ne: Introduction And Thesis Structure	2
1.1 Ove	erview	3
1.2 The	esis Structure	4
Chapter Tw	vo: Literature Survey For Induction Machine Faults	3
2.1 Intro	oduction	4
2.2 Inte	ernal Machine Faults	4
2.2.1	Internal Mechanical Faults	4
2.2.2	Internal Electrical Faults	4
2.3 Indu	uction Motor Major Faults	5
2.3.1	Bearing Failures	5
2.3.2	Air Gap Eccentricity Fault.	6
2.3.3	Stator Inter-Turn Fault	8
2.3.4	Broken Rotor Bar	9
2.4 Con	nclusions	9
Chapter Th	ree: Literature Review For Induction Motor Faults Diagnosis	10
3.1 Intro	oduction	11
3.2 Fau	lt Diagnosis Methods	11
3.2.1	Model Based Detection Methods	13
3.2.2	Process History Based (Knowledge Base)	18
3.3 Con	ndition Monitoring For Induction Motor Faults:	19
3.3.1	Thermal Measure	20

3.3	3.2	Vibration Monitoring	20
3.3	3.3	Electrical Monitoring:	20
3.4	Con	clusions:	21
Chapte	er Fou	ır: Neuro Fuzzy Systems	22
4.1	Intro	oduction	23
4.2	Arti	ficial Neural Network	23
4.2	2.1	Supervised Learning Neural Network (NN)	24
4.2	2.2	Unsupervised Learning Neural Network (NN)	25
4.3	Fuzz	zy Inference System	26
4.3	3.1	Fuzzy Membership Function	26
4.3	3.2	Fuzzy Rules	27
4.3	3.3	Fuzzy Logic Operation	27
4.4	Neu	ro Fuzzy Systems	27
4.4	4.1	Adaptive Neuro Fuzzy System (ANFIS)	27
4.5	Con	clusions	30
Chapte	er Fiv	e: Induction Motor Modeling	31
5.1	Intro	oduction	32
5.2	Indu	ction Motor Healthy Case Modeling	32
5.2	2.1	Modeling In The Abc Frame	32
5.2	2.2	The Modeling In dq Frame	35
5.3	Inter	r-Turn Fault Case	38
5.3	3.1	The Inter Turn Fault In Abc Frame	39
5.3	3.2	The Inter Turn Fault For The dq Frame	40
5.4	The	Induction Motor Simulink Model Based dq Frame Equation	42
5.4	4.1	Healthy Case Model	43
5.4	4.2	Model Of Faulty Induction Motor	49
5.5	Con	clusions	51
Chapte	er Six	: Simulation And Results	52
6.1	Intro	oduction	53
6.2	The	Proposed Technique	53
6.2	2.1	Stator Current Variation	53

6.	2.2	Fuzzy And Neural Network Structure	55
6.	2.3	Adaptive Neuro-Fuzzy System (ANFIS) Training Data	57
6.3	Ach	ieved Results	57
6.4	Con	clusions	60
Chapte	er Se	ven: Conclusions And Recommended Future Work	61
7.1	Con	clusions	62
7.2	Rec	ommended Future Work	62
List O	f Ref	erences	63
Appen	dixes	S	71
App	endix	x-A -The Inductance And Resistance Matrix Items (dq)	72
App	endix	x-B: The Inductance And Resistance Matrix Items (dq) M-File	76
App	endix	x-C: Anfisgui Matlab Tutorial	78
App	endix	x-D: ANFIS Analysis And Result Tables	86

LIST OF TABLES

Table	Page
Table (6. 1): Motor Parameters	55
Table (6. 2): Error Comparison For Two and Three Membership	57
Table (6. 3): Analysed Data And ANFIS Deviation.	58
Table (C.1): The Checking Data Vs The Testing Data	85
Table (D.1): Results for 110% Loading	86
Table (D.2): Results for 100% Loading	87
Table (D.3): Results for 50% Loading	88
Table (D.4): Results for No-Load	89
Table (D.5): Results for 75% Loading	90
Table (D.6): Results for 25% Loading	91

LIST OF FIGURES

Figure Page
Figure (2. 1): The Faults And Occurrence Rate
Figure (2. 2): Bearing Common Faults6
Figure (2. 3): Bearing And Shaft Effect
Figure (2. 4): Eccentricity Faults
Figure (3. 1): Fault Diagnosis Methods For model base and knowledge base12
Figure (3. 2): The System Fault Affection Based Estimation
Figure (4. 1): Artificial Neural Network Architecture23
Figure (4. 2): Supervised Learning NN Schematic
Figure (4. 3): Unsupervised Learning NN Schematic
Figure (4. 4): ANFIS Structure For Two I/P With Three MMF (One O/P)29
Figure (5. 1): Star Connected Symmetrical Three Phase Induction Motor33
Figure (5. 2): Stationary dq Frame, Same Stator Angular Velocity (2Πf)35
Figure (5. 3): Three Phase Induction Motor Stator Winding Fault Schematic. 39
Figure (5. 4): Three Phase Induction Motor In dq Frame With Turn Fault40
Figure (5. 5): Induction Motor Overall Simulink Model
Figure (5. 6): Supply Voltage Transformation Stage
Figure (5. 7): I ^s _q Calculations
Figure (5. 8): I ^s _d Calculations
Figure (5. 9): I ^r _q Calculations
Figure (5. 10): I ^r _d Calculations
Figure (5. 11): Flux Linkage Of q Axis Stator
Figure (5. 12): Flux Linkage Of d Axis Stator46
Figure (5. 13): Flux Linkage Of q Axis Rotor46
Figure (5. 14): Flux Linkage Of d Axis Rotor
Figure (5. 15): Electromechanical Torque At No Load (Healthy)47
Figure (5. 16): Iqs, Ids At Full Load And Healthy Case (X=0%)48
Figure (5. 17): Electromechanical Torque At Full Load (Healthy)

Figure (5. 18): Ishq Calculation	49
Figure (5. 19): Flux Linkage Of Short Turns.	49
Figure (5. 20): Iqs, Ids At Full Load And 7% Fault	50
Figure (4. 21): Electromechanical Torque At Full Load And 7% Fault	51
Figure (6. 1): The Fault Analysis System For Induction Motor (dq)	53
Figure (6. 2): dq currents VS Fault Percentages (X %)	54
Figure (6. 3): Designed Fuzzy Part Of ANFIS	56
Figure (6. 4): Designed ANFIS Structure	56
Figure (6. 5): % Error VS Fault Percentages (75% and 25% test)	59
Figure (6. 6): % Error VS Fault Percentages (75% including)	60

LIST OF SYMBOLS

$I_{o.l}$	Motor over load current setting
i^{r}_{abc}	Rotor Current in three phase ABC
I_{rated}	Motor rated current
i^{s}_{abc}	Stator Current in three phase ABC
$\begin{array}{c} L_{a1a2)f} \\ L_{a2a2)f} \end{array}$	Mutual inductance between faulty area and healthy area of phase A Self inductance for faulty area of phase A
$egin{array}{c} L_{asr} \ L_{-q}^{sh} \end{array}$	Mutual inductance between phase A and any rotor phases Representation of self inductance of phase A faulty area in dq frame
L_{q}^{shr}	Representation of mutual inductance between phase A faulty area and any rotor phases in dq frame
L_{q}^{s}	Representation of self Inductance for healthy area of phase A in dq frame
$L_{}^{sr}$	Representation of mutual inductance between phase A healthy area and any rotor phases in dq frame
L_{q}^{ssh}	Representation Mutual inductance between faulty area and healthy area of phase A in dq frame
p P	Differential operator =d/dt Machine pair poles
r_{abc}^{r}	Rotor resistance in three phase ABC
r^{s}_{abc}	Stator resistance in three phase ABC
V^{s}_{abc}	Stator Voltage in Three Phase ABC
$egin{array}{c} w_m \ X \end{array}$	Motor rotational velocity rad/sec2 Fault percentage %
$\lambda^r_{\ abc}$	Rotor flux linkage in three phase ABC
$\lambda^s_{\ abc}$	Stator flux linkage in three phase ABC
$\begin{matrix} \lambda^s_{~qd} \\ \lambda^{sh}_{~~q} \end{matrix}$	Stator flux linkage in dq frame Stator flux linkage of faulty area in q phase as represent phase A fault

LIST OF ABBREVIATIONS AND DEFINITIONS

ANN: Artificial neural network.

ANFS: Adaptive Neuro Fuzzy.

Failure: An abnormal permanent condition that affects the system performance.

Fault: An abnormal temporary condition that occurs in the system.

Fault detection: Is the determination of fault as kind and time.

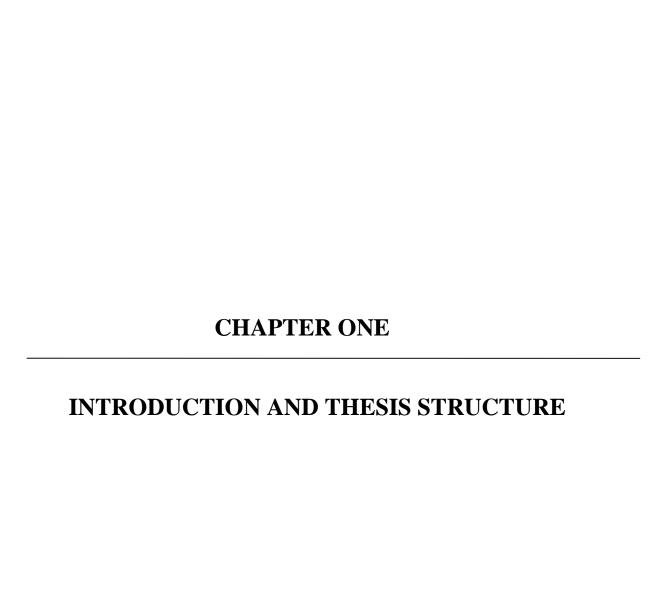
Fault diagnosis: The determination of fault as kind, size, location and time.

Fault Monitoring: Detection of fault in real time base through recording the physical system data and determining the abnormalities.

FFT: Fast Fourier Transform

FL: Fuzzy logic.

Malfunction: An irregular fault that affects the system desired output.


ABSTRACT

The Induction machine is one of mostly common machine. It is almost used for all industrial applications, wind energy generation and recently it has been proposed for applications of hybrid electrical vehicle and electrical air craft. Fault monitoring and control becomes high priority for induction machine.

This thesis discusses the fault diagnosis and monitoring of the induction motor, starting with the machine different faults and the different algorithms to detect these faults (intelligent control, parameter estimation...). The scope of this research is the fault with high occurrence percentage, which is stator turns faults .It is built on objects of:

- a) Three phase induction motor modeling in both the symmetric healthy and asymmetric faulty cases using of dq frames instead of ABC.
- b) An algorithm of on-line fault detection based on the motor fault response and motor electrical parameters change.
- c) The efficient design of an Adaptive Neuro Fuzzy system.

This thesis reviews methods of fault detection and diagnosis of stator inter-turn short circuits for three phase induction machine. It is based on motor stator current and motor modeling in "dq" frame at different loading condition and various percentages of faults using an artificial intelligence technique of Neuro Fuzzy which lead to a high efficiency method for fault detection because of its ability to learn and adapt to the motor environment condition.

