Serum Epidermal Growth Factor Receptor Level In Children With Brain Tumors

Thesis submitted in partial fulfillment for master degree in

Pediatrics

by

Mahdi Abd El-Hamid Hasanin

M.B.B.Ch.

Benha University

Under Supervision of

Prof. Hamed Mahmoud Shatla

Professor of pediatrics
Faculty of medicine-Ain Shams University

Dr. Iman Ali Abd El-Hamid

Lecturer of pediatrics
Faculty of medicine-Ain Shams University

Dr. Hala Abd El Al Ahmed

Lecturer of clinical pathology
Faculty of medicine-Ain Shams University

Faculty of medicine Ain Shams University 2009

بسر الله الرحمة الرحيس

قالوا سبكانك لا علم لنا إلا ما

علمتنا إنك أنت العليم

15 <u>Lu</u>

محدق الله العظيم سهرة البقرة الآية (٣٢)

Dedicationn

To:

Soul of my parents

To::∶

My Brother and sisters

To:

My sincere wife

To:

My lovely children Raghad, Mohamed and Ahmed

Acknowledgment

First of all, I thank *Allah* to whom I relate any success in my life.

In a few grateful words, I would like to express my deepest gratitude and appreciation to his excellency *Prof. Dr. Hamed Mahmoud Shatla*, professor of pediatrics, Ain Shams University, for his kind help, cooperation and valuable advice. It is a great honor to work under his guidance and supervision.

I wish to express my gratitude to **Dr. Iman Ali Abd El-Hamid**, lecturer of pediatrics, Ain Shams University, for her kind and active participation, honest assistance and unlimited help through-out the whole work.

I wish to express my great appreciation to *Dr. Hala Abd El Al,* lecturer of clinical pathology, Ain Shams University for her great help through-out the whole work.

I also would like to express my great appreciation to $\mathcal{D}r$. Mohamed Alaa El-Din Habib, lecturer of neurosurgery, Ain Shams University for his great help throughout this work.

I also like to thank all patients on whom and for whom this study has been done; my wishes to all of them to get better soon.

Contents

Subject	Page No.
List of Abbreviations	6-7
List of Figures	8-9
List of Tables	10 – 11
Introduction	12-13
Aim of the work	14
Review of literature	
Brain tumors	15-51
Epidermal growth factor receptor	52-67
Epidermal growth factor receptor and cancer	68-76
Subjects and Methods	77-83
Results	84-108
Discussion	109-119
Summary	120-122
Conclusion	123
Recommendations	124
References	125-142
Arabic Summary	143-148

List of Abbreviations

ADCC	Antibody-dependent cellular cytotoxicity
AFP	Alpha-fetoprotein
ALL	Acute Lymphoblastic Leukaemia
ATP	Adenosine triphosphate
CBT	Childhood Brain Tumors
CCG	Children's Cancer Study Group
cGy	centi-Gray
CNS	Central nervous system
CR 1	Cysteine-Rich 1
CRT	Cranial radiation therapy
CSF	Cerebro-spinal fluid
CT	Computed tomography
Cys	Cysteine
3D-CRT	Three-Dimensional Conformal Radiotherapy
DNA	Deoxyribo Nucleic Acid
EGF	Epidermal growth factor
EGFR	Epidermal Growth Factor Receptor
EGFR vIII	Epidermal Growth Factor Receptor variant three
ELISA	Enzyme linked immuno-sorbant assay
ErbB	Epidermal receptor binding-B
ERK	Epidermal receptor kinase
FDG	F-deoxyglucose
Fmol/ml	Femto mole per milliliter
GFR	Glomerular filteration rate
GH	Growth hormone
GnRH	Gonadotropin releasing hormone
HB-EGF	Heparin-binding epidermal growth factor-like
	growth factor
hCG	Human chorionic gondadotropin
Her-2	Human epidermal growth factor receptor-2
ICP	Intracranial pressure
ICT	Intracranial tension
IgG	Immunoglobulin G

	T
INR	International normalized ratio
IQ	Intelligence quotient
KDa	Kilo-dalton
LEU	Leucine
MAbs	Monoclonal antibodies
MAPK	Mitogen activated protein kinase
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
mRNA	Messenger Ribo Nucleic Acid
N	Number
NF-1	Neurofibromatosis type 1
NOC	N-nitroso compounds
NS	No significance
NSCLC	Non-small cell lung cancer
NSS	Neurological severity scale
OSR	Overall survival rate
PET	Positron emission tomography
PI3K	Phosphatidyl inositol-3 kinase
PKC	Protein kinase c
PNET	Primitive neuroectodermal tumor
PNET-MB	Primitive neuroectodermal tumor-
	Medulloblastoma
P value	Probability value
RAS	Receptor activation signal
ROCs	Receiver operating characteristics curve
RTK	Receptor tyrosine kinase
SD	Standard deviation
Sig	Significance
Src	Signaling receptor-C
TGF-α	Transforming growth factor-α
TK	Tyrosine kinase
<i>TMB</i>	Tetra-methyl benzidine
WHO	World Heath Organization
	-

List of Figures

Figure	Title	Page
Number		Number
Fig .(1)	Incidence of the common pediatric CNS tumors	15
Fig .(2)	schematic structure of EGFR	54
Fig .(3)	EGFR function	55
Fig .(4)	Mechanisms of activation of receptor tyrosine kinases	59
Fig .(5)	Signal Transduction Pathways Controlled by the activation of EGFR	62
Fig .(6)	Mechanisms of Action of Anti-EGFR Drugs in Cancer Cells	64
Fig .(7)	Mechanisms of Action of Anti-EGFR Monoclonal Antibodies in Cancer Cells	65
Fig .(8)	Mechanisms of action of EGFR inhibitors.	66
Fig .(9)	Schematic representation of the EGFR in the	68
	transmission of signals regulating tumor growth and metastasis	
Fig .(10)	Schematic protein structure of EGFR and mutant forms	73
Fig .(11)	s. EGFR level against optical density.	83
Fig .(12)	Clinical presentation of the patients	87
Fig .(13)	Tumor site by neuro-imaging	89
Fig .(14)	Presence of hydrocephalus in the patients by neuro- imaging	90
Fig.(15)	Histopathological types of tumors of the patient group	92
Fig.(16)	Interactive graph representing range and mean of s. EGFR in cases and controls	95

List of Figures (Cont...)

Figure	Title	Page
Number		Number
Fig.(17)	Scattered graph representing correlation between s.	100
	EGFR and different grades of brain tumors in the patient	
	group.	
Fig.(18)	Kaplan – Meier curve for overall survival rate according	102
	to pathological tumor type	
Fig.(19)	Kaplan – Meier curve for overall survival rate according	104
	to grade of the tumor	
Fig.(20)	Kaplan –Meier curve for overall survival rate according	106
	to s. EGFR level	
Fig.(21)	ROCs curve for testing the sensitivity and specificity of s.	108
	EGFR level in diagnosis of brain tumors in the patients.	

List of Tables

Table	Title	Page
Number		Number
Table (1)	Inherited disorders associated with childhood brain	17
	tumors.	
Table (2)	The new WHO classification of brain tumors	22-25
Table (3)	EGF-like growth factors	56
Table (4)	Overexpression of the EGFR and Her-2 in human cancers	70
Toble (5)		84
Table (5)	Age distribution in patients versus controls.	
Table (6)	Sex distribution in patients versus controls	85
Table (7)	Presenting symptoms in patients with primary brain	86
	tumors.	
Table (8)	Neurological deficits in patients with brain tumors	88
Table (9)	Site of brain tumors by neuro-imaging	89
Table. (10)	Presence of hydrocephalus in the patients	90
Table (11)	Types of tumors by histopathology	91
Table (12)	WHO grading of brain tumors in the patient group	93
Table (13)	Frequency of abnormal serum epidermal growth factor	94
	receptor level in cases and controls.	
Table (14)	Comparison between patients and controls as regards s.	95
	EGFR level.	
Table (15)	Correlation between serum EGFR and age among cases	96
	and controls.	
Table (16)	Mean s.EGFR level in relation to sex in cases and	96
	controls	

List of Tables (Cont...)

Table	Title	Page
Number		Number
Table (17)	Mean s. EGFR level in relation to the presenting symptoms	97
	in the patient gr up	
Table (18)	Mean s.EGFR level in relation to the anatomical location of	98
	the tumor in the patient group	
Table (19)	Mean s.EGFR in relation to the presence of hydrocephalus	98
	among the patients	
Table (20)	Mean s.EGFR in relation to different histopathological	99
	types of brain tumors among the patients	
Table (21)	Correlation between s. EGFR and grade of the tumor	100
Table (22)	Kaplan – Meier survival estimate for overall survival time	101
	(OST) according to Histopathology	
Table (23)	Kaplan -Meier survival estimate for overall survival time	103
	(OST) according to WHO grading of brain tumors in the	
	patients	
Table (24)	Kaplan – Meier survival estimate for overall survival time	105
	(OST) according to serum EGFR in the patients	
Table (25)	Comparison between s. EGFR in living and dead cases	107
Table (26)	Sensitivity and specificity of our diagnostic test (s. EGFR)	107
	for the patients	

Introduction

Brain tumors are a heterogeneous group of diseases that collectively are the second most frequent malignancy in childhood and adolescence. Mortality among this group approaches 45%. In addition, these patients have the highest morbidity, primarily neurologic, of all childhood malignancies. However, outcomes have improved over time with innovations in neurosurgery and radiation therapy as well as identification of chemotherapy as a therapeutic modality (*Kuttesch et al.*, 2008).

Epidermal Growth Factor Receptor (EGFR) is a transmembrane cell surface receptor that plays an important and complex role in a wide variety of pathophysiological disorders including cancer. EGFR is a member of tyrosine kinases. The ligand-binding component of EGFR resides on the exterior surface of the cell and can be activated by hormones, growth factors, neurotransmitters and other cellular regulators (*Mendelson and Baselga*, 2000).

When EGFR is activated by epidermal growth factor and other ligands, a variety of complex intracellular signaling pathways are triggered resulting in regulation of diverse cellular processes such as cell division, cell survival and cell motility (*Yarden and Sliwkowsky*, 2001).

Normally, EGFR activation is regulated. But when such regulation is disrupted, ongoing stimulation of cell replication results. This deregulation predisposes to the development and maintenance of cancer by initiating a continued uncontrolled cell proliferation. Deregulation may result from EGFR gene amplification that results in more growth factor receptors on the cell surface, increased EGFR transcription or translation that results in overexpression of cell surface growth factor receptors and increased EGFR- mediated signaling (*Brugge and McCormick*, 1999).

Based on structure and function of EGFR, two antireceptor therapeutic strategies have been developed. The first strategy uses humanized monoclonal antibodies that block ligand binding to the extracellular domain. The second approach uses small-molecule inhibitors to inhibit the EGFR tyrosine kinase, which is on the cytoplasmic side of the receptor. A number of EGFR inhibitors have been developed that can arrest tumor growth and, in some cases, cause tumor regression. When used in combination with cytotoxic treatments, chemotherapy or radiation, EGFR inhibitors have been able to potentiate their anticancer activity (*Ritter and Arteaga*, 2003).

Aim of the Work

The aim of this study is to assess serum epidermal growth factor receptor levels in children with brain tumors and to relate its level to different clinicopathological features of the patients

Brain Tumors

Tumors in childhood represent the second most common cause of death after accidents and malignant brain tumors are the first cause of cancer death among children. These tumors account for about 16% of all childhood malignancy being second only to leukemia (*Baldwin and Preston-Martin*, 2004).

Incidence:

The incidence of childhood CNS tumors appeared to be on the rise. This higher incidence was likely due to the increased use of magnetic resonance imaging (MRI) to evaluate children with neurologic conditions and to an increase in microscopical confirmation techniques rather than true increase in the disease frequency (*Pizzo et al.*, 2006).

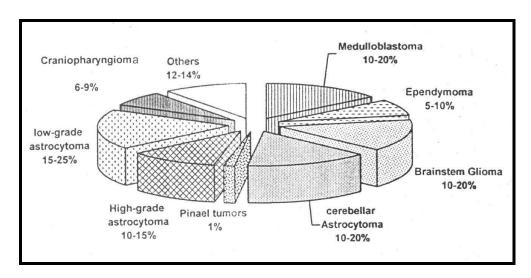


Fig. (1): Incidence of the common pediatric CNS tumors (Pizzo et al., 2006).