

شبكة المعلومات الجامعية

بيد الله الرحمل الرحم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ منوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلية تالفة

بالرسالة صفحات لم ترد بالاصل

COMPARATIVE CINICAL STUDY ON THE EFFECT OF ANGIOTENSIN CONVERTING ENZYME INHIBITORS AND ANTIOXIDANTS ON THE PATIENTS WITH DIABETIC NEPHROPATHY

A Thesis Presented

By

Islam El-Tantawy Hussin

B.Sc. Pharmaceutical sciences

For

Partial fulfillment for the degree of master in Pharmaceutical Sciences (Clinical pharmacy)

DEPARTMENT OF CLINICAL PHARMACY
FACULTY OF PHARMACY
TANTA UNIVERSITY
1422
2001

221,00

Supervisors

Prof. Dr. Emad A. El-Bassiouni

Prof. of Pharmacology
Dept. of Pharmacology
Medical Research Institute
Alexandria University

Dr. Gamal A. El-Azab

Assist. Prof. of Clinical Pharmacy

Dept. of Clinical Pharmacy

Faculty of Pharmacy

Tanta University

Dr. Mabrouk R. El-Shiekh

Assist. Prof. of Internal Medicne

Dept. of Internal Medicne

Faculty of Medicine

Tanta University

⊅τ. Nahla E. El-Ashmawy

Lecturer. of Biochemistry
Dept. of Biochemistry
Faculty of Pharmacy
Tanta University

بسم الله الرحمن الرحيم قالها سبحانك لاعلم لنا إلا ماعلمتنا إنك أنت العليم الدكيم

صدق الله العظيم

" البقرة ٣٢"

ACKNOWLEDGEMENT

It gives me a great Pleasure to acknowledge the effort of **Prof. Dr. Emad A. El-Bassiouni,** Professor of Pharmacology, Medical Research Institute, Alexandria University, who suggested the subject, kindly and patiently supervised this work and devoted much of his time and effort to give helpful advice. His enthusiastic push and meticulous supervision are all deeply and heartly appreciated.

I am profoundly grateful to **Dr. Gamal A. El-Azab**, Assistant Professor of Clinical Pharmacy, faculty of Pharmacy, Tanta University, for suggesting the subject and for his active supervision, and guidance throughout the work.

My deepest appreciation to **Dr.Mabrouk R. El-Shiekh**Assistant Professor of Internal Medicine, Faculty of Medicine, Tanta
University, for his valuable instructions and assistance.

I owe special gratitude to **Dr. Nahla E. El-Ashmawy**, Lecturer of Biochemistry, Faculty of Pharmacy, Tanta University, for her continuous supervision, kind assistance and tremendous help throughout the work and in the revision of the thesis.

I would like to express my sincere gratitude to **Dr. Osama. H. Ibrahim,** Assistant Professor and Head of department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, who contributed a lot to make this work a reality.

ABBREVIATION

ACE-I: Angiotensin converting enzyme inhibitors.

ACE: Angiotensin converting enzyme.

ADP: Adenosine diphosphate.

ALT: Alanine aminotransferase.

AST: Aspartate aminotransferase.

ATP: Adenosine triphosphate.

CCl4: Carbon tetrachloride.

CE: Cholesterol esterase.

cGMP: Cyclic guanosine monophosphate.

COx: Cholesterol oxidase.

CVD: Cardiovascular disease.

FBS: Fasting blood sugar.

GBM: Glomerular basement membrane.

GFR: Glomerular filtration rate.

GSSG: Oxidized glutathione.

GPx: Glutathione peroxidase.

GSH: Reduced glutathione.

HbA_{1c}: Glycosylated hemoglobin.

IDDM: Insulin-dependent diabetes mellitus.

IgG: Immunoglobulin G

LDL: Low density lipoprotein.

MDA: Malondialdehyde.

NAD: Nicotinamide adenine dinucleotide

NADH: Reduced nicotinamide adenine dinucleotide

NADP: Nicotinamide adenine dinucleotide phosphate

NIDDM: Non--insulin-dependent diabetes mellitus.

PBS: Post-prandial blood sugar.

pGPx: Plasma specific glutathione peroxidase.

ROS: Reactive oxygen species.

RPF: Renal plasma flow.

sGPx: Selenium dependent glutathione peroxidase.

SOD: Superoxide dismutase.

TBARS: Thiobarbituric acid reactive substances.

TG: Triglycerides.

tRNA: Transfer ribonucleic acid.

UAER: Urinary albumin excretion rate.

LIST OF TABLES

Table No.	Title	Page
Table (1)	Summary of endogenous antioxidant defences present in	
	biological systems	28
Table (2)	Summary of relevant biographical data of subject	
	particpating in the study	46
Table (3)	Changes in urinary albumin excretion rate (mg/day)	
	following 4 months of different treatment regimens	66
Table (4)	Changes in serum creatinine concentration (mg/dL)	
	following 4 months of different treatment regimens	70
Table (5)	Changes in blood reduced glutathione concentration	
	(mg/dL) following 4 months of different treatment regimens	73
Table (6)	Changes in plasma thiobarbituric acid reactive substances	
	(nmol/mL) following 4 months of different treatment	
	regimens	78
Table (7)	Changes in serum selenium concentration (µg/L) following	
	4 months of different treatment regimens	80
Table (8)	Changes in fasting blood sugar (mg/dL) following 4 months	
	of different treatment regimens	84
Table (9)	Changes in post-prandial blood sugar concentration	
	(mg/dl) following 4 months of different treatment regimens	
	_	87
Table (10)	Changes in glycosylated hemoglobin (%) following 4	
	months of different treatment regimens	90
Table (11)	Changes in serum triglyceride concentration (mg/dL)	
	following 4 months of different treatment regimens	95
Table (12)	Changes in serum cholesterol concentration (mg/dL)	
	following 4 months of different treatment regimens	96
Table (13)	Changes in serum alanine aminotransferase activity	
	(IU/dL) following 4 months of different treatment regimens	98

Table No.	Title	Page
Table (14)	Changes in serum aspartate aminotransferase activity (IU/dL) following 4 months of different treatment regimens	99
Table (15)	Changes in serum albumin concentration (g/dL) following 4 months of different treatment regimens	102
Table (16)	Changes in systolic blood pressure (mmHg) following 4 months of different treatment regimens	104
Table (17)	Changes in diastolic blood pressure (mmHg) following 4	106
	months of different treatment regimens	156
Table (18)	Duration of disease and age (years) for all studied groups.	
Table (19)	Individual changes in urinary albumin excretion rate	
	(mg/day) following 4 months of different treatment regimens.	157
Table (20)	Individual changes in serum creatinine concentration	
20.520 (220)	(mg/dL) following 4 months of different treatment regimens	158
Table (21)	Individual changes in blood reduced glutathione	
14010 (21)	concentration (mg/dL) following 4 months of different treatment regimens	159
Table (22)	Individual changes in plasma thiobarbituric acid reactive	
	substances (nmol/mL) following 4 months of different	160
	treatment regimens	
Table (23)	Individual changes in serum selenium concentration	161
	($\mu g/L$) following 4 months of different treatment regimens	
Table (24)	Individual changes in fasting blood sugar concentration	
	(mg/dL) following 4 months of different treatment	162
	regimens	

Table No.	Title	Page
Table (25)	Individual changes in post-prandial blood sugar concentration (mg/dL) following 4 months of different treatment regimens	163
Table (26)	Individual changes in glycosylated hemoglobin concentration (%) following 4 months of different treatment regimens	164
Table (27)	Individual changes in serum triglyceride concentration (mg/dL) following 4 months of different treatment regimens	165
Table (28)		166
Table (29)	Individual changes in serum alanine aminotransferase activity (IU/dL) following 4 months of different treatment regimens	167
Table (30)		168
Table (31)	Individual changes in serum albumin concentration (g/dL) following 4 months of different treatment regimens	169
Table (32)	Individual changes in systolic blood pressure (mmHg) following 4 months of different treatment regimens	170
Table (33)	Individual changes in diastolic blood pressure (mmHg) following 4 months of different treatment regimens	171

LIST OF FIGURES

Table No.	Title	Page
Figure (1)	Structural formula of captopril	13
Figure (2)		55
Figure (3)	Standard curve for colourimetric assay of GSH	57
Figure (4)	Changes in urinary albumin excretion rate (mg/day)	67
Figure (5)	Correlation between urinary albumin excretion rate and	
	duration of disease in NIDDH patients	68
Figure (6)	Changes in serum creatinine (mg/dL).	71
Figure (7)		74
Figure (8)	Correlation between thiobarbituric acid reactive	
	substances and duration of disease in NIDDM patients.	75
Figure (9)	Correlation between urinary albumin excretion rate and	,,
	thiobarbituric acid reactive substances in NIDDM patients	76
Figure (10)	Changes in plasma thiobarbituric acid reactive	
	substances (nmol/mL).	79
Figure (11)	Changes in serum selenium (µg/L)	81
Figure (12)	Correlation between urinary albumin excretion rate and	01
	selenium in NIDDM patients	82
Figure (13)		85
Figure (14)	Correlation between urinary albumin excretion rate and	00
	fasting blood sugar in NIDDM patients	86
Figure (15)	Changes in post-prandial blood sugar (mg/dL)	88
Figure (16)	Changes in glycosylated hemoglobin (%)	91
Figure (17)	Correlation between urinary albumin excretion rate and	
	glycosylated hemoglobin in NIDDM patients.	92
Figure (18)	Correlation between selenium and glycosylated	02
	hemoglobin in NIDDM patients.	93
Figure (19)	Changes in serum albumin (g/dL)	103
Figure (20)	Changes in systolic blood pressure (mmHg)	105
Figure (21)	Changes in diastolic blood pressure (mmHg)	107