

Endovascular Management of Lower Limb DVT and Its sequelae

An Essay Submitted For Partial Fulfillment Of Master Degree in General Surgery

By **Hussien Aly Hussien Touny**M.B., B.ch
Ain Shams University

Under supervision Of

Prof Dr. Wagih Fawzy Abd El-malek

Professor of general and vascular surgery Faculty of Medicine -Ain Shams University

Dr. Mohamed Mostafa Zahran

Consitant of vascular surgery Military Medical Academy

Dr. Abdelrahaman Mohamed Ahmad

Lecturer of general and vascular surgery Faculty of Medicine -Ain Shams University

علاج الجلطة الوريدية العميقة و تبعيتها عن طريق

التدخل الجوف وعائى

رسالة مقدمة من الطبيب/حسين علي حسين تونى بكالوريوس الطب والجراحة – جامعة عين شمس

كتوطئة للحصول على درجة الماجستير في الجراحة العامة

تحت إشراف

الأستاذ الدكتور /وجيه فوزي عبد الملك

أستاذ الجراحة العامة وجراحة الأوعية الدموية كلية الطب - جامعة عين شمس

الدكتور/ محمد مصطفي زهران

أستشاري جراحة الأوعية الدموية الأكاديمية الطبية العسكرية

□الدكتور/عبد الرحمن محمد أحمد

مدرس الجراحة العامة وجراحة الأوعية الدموية كلية الطب - جامعة عين شمس

> كلية الطب _ جامعة عين شمس ٢٠١٤

الملخص العربي

متلازمة ما بعد الجلطة (PTS) هي سبب شائع للألم المزمن، والتورم، التقرح، والعجز في المرضى الذين يعانون من جلطات الاوردة العميقة (DVT).

يتم استشارة جراحي الأوعية الدموية على مزيد من المرضى يوميا ، الذين يعانون من الاصابة بجلطات الاوردة العميقة المزمنة و متلازمة ما بعد الجلطة ، و لهذا يجب ان تكون استراتيجيات علاجها من قبل فهم متوازن لجوانب الرعاية المختلفة وخيارات العلاج المتاحة.

هذا استعراض لتقديم لمحة عامة عن النهج متعددة الأوجه لعلاج المرضى الذين يعانون من جلطات الاوردة العميقة المزمنة و متلازمة ما بعد الجلطة متضمنا الجوانب الدوائية والفسيولوجية والعلاج عن طريق الاشعة التداخلية.

متلازمة ما بعد الجلطة هي المضاعفات الأكثر شيوعا ما بعد الجلطة الوريدية العميقة ، والتي تحدث على الرغم من العلاج المضاد للتجلط في ٢٠٪ -٤٠٪ من المرضى في غضون السنوات الأولى بعد الجلطة الوريدية العميقة للطرف السفلي. وقد تشمل تقرح، ويحدث في ٥٪ -١٠٪ من المرضى و يؤدي إلى المعاناة والعجز و تكلفة على المجتمع.

وقد أظهرت الأبحاث الحديثة أن نوعية الحياة بين المرضى الذين يعانون من متلازمة ما بعد الجلطة هو الأفقر من بين المرضى في سن مماثلة مع التهاب المفاصل، وأمراض الرئة المزمنة و مرض السكري، و يحصلون هؤلاء المرضي علي جودة حياة مماثلة لأشخاص يعانون من الذبحة الصدرية والسرطان و السكتة القلبية.

وقد أثبت العلاج الجوف وعائي عن طريق البالون والدعامات انه يمكن ان يؤسس التدفق الوريدي في الأوردة الحرقفية ويخفف اعراض متلازمة ما بعد الجلطة ومضعافتها في غالبية المرضى.

Introduction

The post thrombotic syndrome (PTS) is a frequent cause of chronic pain, swelling, ulceration, and disability in patients with lower extremity deep vein thrombosis (DVT).(Kahn SR et al,2005)

As vascular surgeons are consulted on more patients with chronic DVT and PTS, their management strategies must be informed by a balanced under-standing of the different facets of chronic DVT care and the available treatment options.(*Kahn SR et al,2008*)

This is a review to provide an overview of the important elements of a multifaceted approach to the management of patients with PTS that includes pharmacological, physiological, and endovascular aspects of care.

The post thrombotic syndrome (PTS) is the most common complication of venous thrombo-embolism (VTE), occurring despite optimal anticoagulant therapy in 20%–40% of patients within the first 1–2 years after deep venous thrombosis (DVT) of the lower limb. Severe PTS, which may include ulceration, occurs in 5%–10% of DVT patients. PTS leads to suffering and disability and is costly to society. (*Caprini JA et al,2003*)(*Bergqvist D et al,1997*)

Recent research has shown that quality of life among patients with PTS is poorer than that among patients of similar age with arthritis, chronic lung disease or diabetes, while patients with severe PTS report quality of life that is comparable to persons with angina, cancer or congestive heart failure.(*Kahn SR et al,2006*)

There are now 4 clinical scoring systems that may be helpful for the diagnosis of PTS. These include Widmer staging, Villalta scale, Ginsberg measure, and Clinical Etiologic Anatomic Pathophysiologic (CEAP) classification. There is no clear advantage of using one of these scales over the others. Both the CEAP and Widmer scales are more general classifications and may be used in evaluating both PTS and chronic venous disease, while the Villalta scale and Ginsberg measure are specific for PTS. (Villalta S et al,1994)(Ginsberg JS et al,2001)

The appropriate combination of non invasive to minimally invasive tests should follow in order to confirm or exclude the clinical impression. Duplex scanning is the first test of choice for non invasive evaluation of patients with PTS.(*Porter JM et al,1995*)

MR venography is another invasive test to identify PTS. The test is reliable, it confirms the extent of PTS. Invasive tests are usually not needed to establish the diagnosis of the PTS and can be deferred until intervention is required.

Endovascular treatment of acute and chronic iliac vein occlusions has proven to be safe and effective. Recanalization of chronic occlusions with balloon angioplasty and stenting can re establishes normal venous flow in the iliac veins and relieves symptoms in the majority of treated patients. (*Tilo Kölbel et al*, 2008)

Recanalization and stenting of underlying chronically obstructed iliofemoral segments is becoming the treatment of choice for patients with acute iliofemoral thrombosis, as anticoagulation and compression therapy alone are not satisfactory in preventing PTS. (*Tilo Kölbel et al*, 2008)

CONTENTS

Subject	Page
INTRODUCTION	1
AIM OF THE WORK	4
CHAPTER 1: Anatomy of Venous System of the Lower Limb	5
CHAPTER 2: Pathogensis of DVT	16
CHAPTER 3: Post Thrombotic Syndrome	40
CHAPTER 4: Diagnosis of acute DVT and PTS	66
CHAPTER 5: Endovascular treatment of acute DVT	93
CHAPTER 6: Endovascular treatment of PTS	108
SUMMARY	139
REFERENCES	140
ARABIC SUMMARY	-

LIST OF FIGURES

Fig.	Title	Page
1	(a) The great long saphenous vein and its tributaries(b) The small short saphenous vein and its tributaries .	7
2	Overview of veins of the lower limb.	12
3	The inferior vena cava and its trib-utaries.	15
4	Different stages of PTS.	43
5	Signs of PTS.	45
6	Pathophysiology of PTS.	47
7	Elastic compression stocking.	57
8	veno wave device.	62
9	Thrombus in popliteal vein.	75
10	Indirect CT venography.	76
11	Chronic occlusion of the IVC and the left common iliac vein after iliac vein thrombosis at 29 years of age	79
12	Lysus(The EkoSonic ® Endovascular System)	97
13	Angiojet thrombectomy system.	102
14	CLEANER XT DEVICE	102
15	The Trellis Peripheral Infusion System	107
16	Transfemoral phlebogram showing typical post-thrombotic iliofemoral vein segments.	110
17	Iliofemoral post-thrombotic obstruction.	114
18	Images obtained by venous intravascular ultrasound	115

Fig.	Title	Page
	(IVUS).	
19	Balloon dilatation and stenting for left common iliac vein compression syndrome.	120
20	Extensive venous collaterals obscure the primary entry point from which to start recanalization attempts.	122
21	Transfemoral venogram performed through a sheath inserted after ultrasound guided cannulation of the left femoral vein.	127
22	Stenting techniques of IVC.	130
23	Alternative types of stenting of bilateral iliocaval obstructions.	131
24	Stent design and stent-related problems.	133
25	Intermittent pneumatic compression devices	136

LIST OF TABLE

Table No.	Title	Page
1	Typical clinical features of PTS.	45
2	Prevention and management of PTS summary.	65
3	Wells clinical score for DVT.	72
4	Villalta's PTS scoring system.	84
5	The CEAP Scoring System.	87
6	VCSS.	89

LIST OF ABBREVIATIONS

ACCP : American College of Chest Physicians

APC : Activated protein C

AVF : Arterio-venous Fistula

CDT : Catheter Directed Thrombolysis

CEAP : clinical-etiological-anatomical-pathophisology

CFV : Common femoral vein

CT : Computed Tomography

CTPA : Computed Tomography pulmonary angiography

CTV : Computed Tomography venography

DVT : Deep venous thrombosis

ePTF : expanded poly-tetra-fluoro-ethylene

FDA : Food and Drug Administration

HRT : Hormonal Replacement therapy

IBD : Inflammatory Bowel Disease

ICU: Intensive Care Unite

IFDVT : Iliofemoral deep venous thrombosis

IL : Interleukin

INR : International Normalized Ratio

IVC : Inferior vena cava

IVU : Intravascular Ultrasound

LE : Lower Extremity

MCP-1 : Monocyticchmotaxic protein-1

MI : myocardial infarction

MMP : Matrix Metalloproteinase

MPs : Microparticles

MRI : Magnetic Resonance Imaging

MRV : Magnetic resonance venography

NIVLs: Non-thrombotic iliac vein obstructive lesions

PAI : Plasminogen activator inhibitor

PCDT: Pharmacomechanical Catheter Directed

Thrombolysis

PE : Pulmonary embolism

PMT: Percutaneous Mechanical Thrombectomy

PTS : Post-thrombotic syndrome

PTT : Partial Thromboplastin Time

QOL : Quality of life

rt-PA : Recombinant Tissue Plasminogen activator

SLE : Systemic Lupus Erythematosus

TF : Tissue Factor

UFH : Unfractionated Heparin

US : Ultrasound

VCSS : venous clinical severity scale

VEINES- : veines quality of life/ symptoms

QOL/Sym

VTE : Venous thrombo embolism

VWF : Von willebrand Factor

Aim of the work

To identify different endovascular strategies for the removal of thrombus in the management of acute lower limb DVT; and give a hint about the chronic sequelae of DVT especially The post thrombotic syndrome, and identify the different endovascular intervention modalities in the treatment of PTS and techniques of venous angioplasty and stenting.

Anatomy of Venous System of the <u>Lower Limb</u>

Anatomy of venous system of the lower limb and ivc

The venous system of the lower limb is divided into three systems:

- 1. Superficial system, which lies outside the deep fascia.
- 2. Deep system, which lies within the deep fascia.
- Perforating system, which passes through the deep fascia and connects the deep and superficial system. (Michael, 2002)

About 10-15% of the venous drainage of the lower limb is carried by the superficial veins while the deep veins carry out the rest. (Alimi et al.,1994).

1) The superficial venous system of the lower limb:

The long or great saphenous vein: of greatest concern to the physician treating venous diseases in the lower extremity is the great saphenous vein (Williams, 2005).

The long saphenous vein is the longest vein in the body. It is formed by the union of veins from the inner part of the foot and the medial marginal vein and runs upwards for 1 to 1.5 inches in front of the medial malleolus of the tibia (**Decker et al., 1996**).

It spirals around the medial aspect of the leg and crosses behind the femoral condyle. It continues up the medial aspect of the thigh and empties into the femoral vein at about 4cm below the inguinal ligament (**Kupinski et al., 1993**).

Terminal tributaries:

Just below the sapheno-femoral junction, the great saphenous vein receives several additional tributaries including the lateral and medial femoral cutaneous veins, the internal pudendal vein, the superficial circumflex iliac vein and the superficial epigastric vein (**Robert et al., 2004**).

The short or lesser saphenous vein:

Begins at the lateral end of the venous arch on the dorsum of the foot and ascends behind the lateral malleolus, along lateral border of tendo-calcaneus. It extends up the back of the calf, passes between the two heads of the gastrocnemius muscle and empties into the popliteal vein in the popliteal fossa.(Henry et al., 2004).