

SOLAR SPECTRUM MODULATION BY CHROMOGENIC THIN FILM MATERIAL TO SAVE CONSUMED ENERGY

By

Shimaa Ahmed Aly Ahmed Hassan (M. Sc.)

THESIS

SUBMITED
FOR THE DEGREE OF Ph.D. PHYSICS
(SOLID STATE)

TO

Department of Physics
University College for Women
Ain –Shams University
Egypt
(2015)

Ain Shams University University College for Women (Arts, Science, and Education) Physics Department

SOLAR SPECTRUM MODULATION BY CHROMOGENIC THIN FILM MATERIAL TO SAVE CONSUMED ENERGY

By

Shimaa Ahmed Aly Ahmed Hassan

(M. Sc.)

Supervised

By

Prof.Dr.Hamdia Abd-El Hamied Zayed

Prof. Dr. Hassan Hassan Afify

Department of Solid State Physics

National Research Center

University College for Women

Ain-Shams University (SOLID STATE)

Department of Physics

Prof. Dr. Salama Edward Demian

Department of Solid State Physics

National Research Center

Ain Shams University University College for Women (Arts, Science, and Education) Physics Department

Name of Student: Shimaa Ahmed Aly Ahmed Hassan

Assistant Researcher - National Research Center

Graduate: M.Sc. in physics 2010, Department of Physics,

University College for Women, Ain Shams

University.

Title of Thesis: Solar Spectrum Modulation by Chromogenic Thin

Film Material to Save Consumed Energy

Scientific Degree: Ph.D. Degree in Science "Solid State

Physics"

Department: Physics.

Under supervision of:

1- Prof. Dr. Hamdia A. Zayed

Physics Department, University College for Women (Arts, Science and Education)-Ain Shams University

2- Prof. Dr. Hassan H. Afify

Solid State Physics Department National Research Center

3- Prof. Dr. Salama E. Demian

Solid State Physics Department National Research Center

Post graduate administration

Date of research: / / 2015

Date of approval: / / 2015 Approval stamp:

Approval of Faculty Council: / /2015 Approval of University Council: / /2015

Acknowledgements

Praise be to ALLAH, the Ever-Glorious

The author would like to express her deepest gratitude to **Prof. Dr. Hassan H. Afify**, Solid State Physics Department, National Research Center, Cairo, Egypt, for suggesting the point of research, technical advice, direct continuous supervision, and constructive comments during analysis of the data, fruitful discussion and help to write the final form.

Deep appreciation is felt to **Prof. Dr. Hamdia Abd El-Hamied Zayed**, Physics Department, University College for Women, Ain Shams University for her kind interest and supervision.

The author is grateful to **Prof. Dr. Salama Demian**, Solid State Physics Department, National Research Center, Cairo, Egypt, for able supervision, valuable advice and great help during the status of writing the thesis.

The author is grateful to **Dr. Ahmed Sobhy,**Spectroscopic physics Department, National Research
Center, for great help during the status of writing the thesis.

Contents

Acknowledgement	I
Contents	
List of Tables	$\mathcal{V}I$
List of Figures	VII
Abstract	XIII
Chapter I: Introduction	1
I.1. Chromogenic materials	2
I.1.1. Importance and definition	2
I.1.2. Types of chromogenic materials and applications	2
I.1.2.a. Thermochromic materials	2
I.1.2.6. Elechtrochromic materials	3
I.1.2. c. Photochromic materials	5
Chapter II: Basic Concepts	6
II.1.Thermochromic materials	6
II.1.1. Inorganic thermochromic materials	6
II.1.2. Organic thermochromic materials	7
II.2. Electrochromic materials	8
II.2.1.Organic electrochromic materials	10
II.2.2.Inorganic electrochromic materials	10
II.3.Photochromic materials	11
II.3.1.Organic photochromic materials	11
II.3.2.Inorganic photochromic materials	12
II.4. Photochromic mechanisms	13
II.4.1. Color center model	13
II.4.2. Double insertion/extraction of ions and electrons	

Intervalence-charge transfer model	14
II.4.3. Small-polaron absorption model	16
II.5.Transition metal oxide MoO3	16
II.6. Thin Solid Film Deposition Techniques	18
II.6.1. Vacuum evaporation	20
II.6.2. Reactive evaporation	20
II.6.3. Spray pyrolysis	20
II.6.4. Chemical vapor deposition (CVD)	21
II.6.5. Pulsed laser deposition (PLD)	22
II.6.6. Sputtering	22
II.7. Thin Film Diagnostics	23
II.7. 1. Spectroscopic characterization	24
II.7.1.1. UV-Vis absorption spectroscopy	24
II.7.1.2. Photoelectron Spectroscopy	27
II.7.1.2.a. X-Ray Photoelectron Spectroscopy (XPS)	27
II.7.1.3. Electron spin resonance	33
II.7.1.4. Raman spectroscopy	34
II.7.1.5. Fourier transform infrared absorption spectroscopy	y 39
II.8. Composition, Structure and Morphology Analyses	40
II.8.1. Energy dispersive X-ray spectroscopy (EDS)	40
II.8.2. X-ray diffraction (XRD)	41
II.8.3. Scanning electron microscopy (SEM)	43
II.8.4. Atomic force microscopy (AFM)	44
hapter III: Literature Survey	46
III. 1. Chromogenic material s	46
III.1.1. Electrochromism phenomena	46

III.1.2.Preparation and characterization of	
MoO₃ by spray pyrolysis technique	47
III.1.3. Photochromism of MoO3	51
Chapter IV: Experimental Techniques and Measurements	55
IV.1 .Film preparation process	55
IV.1.1. The spray pyrolysis system	55
IV.1.2 Preparation of spray solution	57
IV.1.3 Substrate cleaning	58
IV.2. The spray pyrolysis parameters	58
IV.2.1 Substrate temperature	58
IV.2.2 Deposition time	59
IV.2.3 Nozzle-substrate distance	59
IV.2.4 Carrier gas and solution flow rate	59
IV.3. Film deposition	59
IV.4. Diagnosis of the prepared films	60
IV.4.1 Structural properties	60
IV.4.2 Surface morphology	61
IV.4.3 Optical properties	62
IV.4.3.1. Film transmittance and absorbance	62
IV.4.3.2. Description of the used UV light source	62
Chapter V: Results and Discussion	64
V-1 Structural analysis	64
V.1.1. Effect of substrate temperature	64
V.1.2. Effect of spray time on structural properties	68
V.1.3. Calculation of crystal size by WinFit program	71
V. 1. 3. A) Profile analysis	71

Contents

V. 1. 3. B) Crystallite size	72
V. 1. 3. C) Size distribution	74
V-2- Morphology study	75
V-2-1- Scanning electron microscope (SEM)	75
V-2-2- Atomic force microscope (AFM)	77
V-3-Optical properties	81
V-3-1. As deposited samples	81
V-3-1.A) Effect of spray time	81
V-3-1.B) Effect of substrate temperature	92
V-3.2. Irradiated samples	99
Summary and conclusion	109
References	115
Arabic Summary	1

	List	of	Tab	iles
--	------	----	-----	------

J	
Table (1): Comparison between observed "d" values,	
obtained from XRD data and those of JCPDS	
card No. 05-0508.	66
Table (2): Preparation condition of MoO ₃ thin film	70
Table (3): Calculated Crystallite Size and Strain,	
for MoO ₃ Samples.	75
Table (4): Average Roughness and Mean Radius	
of particles, for MoO ₃ Samples prepared	
at 400°C and 5min.	77

List of Figures:

Fig. (1) How an electrochromic window works.	
Coloration occurs through an electrochemical reaction	n.
Electrons are transferred into the electrochromic	
layer and ions intercalate at the same time	
to maintain electro-neutrality.	4
Fig. (2) Schematic to show the diffusion of protons in	
the MoO ₂ thin film during the photochromic	
process	15
Fig. (3) The structures of (a) α -MoO ₃ ; (b) β -MoO ₃ ;	
(c) unit cell for the lattice of β -MoO ₃ .	17
Fig. (4) A schematic diagram of thin film deposition	
Techniques	19
Fig. (5) Principle of sputtering process	23
Fig. (6). (a) Optical absorbance spectra for	
100 nm thick MoO ₃ samples deposited at (1) 20,	
(2) 100, (3) 230, and (4) 275 °C; (b) dependence	
of $(\alpha \hbar \omega)^{1/2}$ on the photon energy near the	
fundamental absorption edge	26
Fig. (7) Schematic diagram of excitation of core electrons.	28
Fig. (8) XPS core level spectra of MoO ₃ films:	
(a) virgin state; (b) UV-irradiated in vacuum for 16 h	31
Fig. (9) XPS valence band spectra of T (transparent)	
and B (blue) substoichiometric amorphous	
films of MoO_{3-x}	32
Fig. (10) Electron spin resonance (ESR) of	
a UV-irradiated thin film of	

MoO ₃ at room temperature	33
Fig. (11) The increase of ESR signal as	
a function of irradiation time	34
Fig. (12). Raman spectra for	
(a) MoO ₃ crystalline powder and	
(b) vacuum-deposited MoO3 film.	
The deconvoluted component	
peaks and the fitted spectrum	
are shown below curve (b)	35
Fig. (13). Deconvoluted Raman spectra	
for the MoO ₃ film: (a) before UV irradiation;	
(b) after UV irradiation for 10 min;	
(c) after UV irradiation for 60 min;	
(d) after electrochemical bleaching.	36
Fig. (14). Changes in the FWHM for	
the peaks corresponding to the (a) Mo=O;	
(b) Mo ₂ –O; (c) Mo ₃ –O stretching	
(c) modes during the photochromic process	38
Fig. (15). FTIR spectra of 100-nm thick	
samples in the substrate deposition	
temperature ranging from 293 to 543K	40
Fig. (16) Schematic of Scanning Electron Microscopy (SEM)	43
Fig. (17) Schematic diagram of an AFM	45
Fig. (18) Schematic Diagram of the Spray System.	55
Fig. (19) The spray pyrolysis system in our laboratory in NRC.	56
Fig.(20) Miniature ultraviolet quartz pencil lamp and power	
Supply	63

Fig. (21) X-ray diffraction spectra of MoO ₃	
thin films deposited at different substrate	
temperatures and constant spray time 5 min.	
Peaks corresponding to hydrated MoO ₃	
are denoted by [*]).	65
Fig. (22) The XRD patterns for MoO ₃	
films prepared at fixed substrate temperature	
400°C and varied spray time ranging from	
1 to 5 minutes. Peaks corresponding to	
hydrated MoO3 are denoted by [*].	69
Fig.(23) Structure of α -MoO ₃	70
Fig.(24): Fitting of diffraction lines	
at $2\theta \approx 11.528^{\circ}$, 12.731° , 23.397° , 25.620° ,	
and 27.266° of the prepared MoO ₃	
at 400°C an 5 min.	71
Fig.(25): Plot of normalized Fourier	
coefficient $A(L)$ versus domain size $L(A^{o})$.	73
Fig.(26): Relative and cumulated crystallite	
size distributions.	74
Fig. (27): SEM for MoO ₃ deposited at 400°C (a)	
1 min., (b) 2 min., (c) 3 min., (d) 4 min., (e) 5 min.	76
Fig. (28): 2D & 3D AFM images for MoO ₃ prepared	
at 400°C (a) 1 min., (b) 2 min., (c) 3 min.,	
(d) 4 min. (e) 5 min.	78
Fig.(29): AFM histogram of Mean radius	
of MoO ₃ deposited at substrate temperature	
400°C and varied spray time	79

Fig.(30) Absorption spectra of MoO ₃ deposited	
at different time (1 min. to 5 min.) and	
temperature: (a) 200° C; (b) 250° C;	
(c) 300 ° C; (d) 375 ° C; (e) 400 ° C; (f) 450 ° C.	82
Fig.(31): Deconvolution of absorbance spectra of (MoO_3)	
at different time and $$ temperature 200 $^{ m o}{ m C},$	
(a) 1 min; (b) 2 min (c) 3 min; (d) 4 min; (c) 5 min.	83
Fig.(32): Deconvolution of absorbance spectra of (MoO ₃)	
different time and temperature 250 C:	
(a) 1 min; (b) 2 min (c) 3 min; (d) 4 min; (e) 5 min.	86
Fig. (33) Deconvolution of absorbance spectra	
of MoO ₃ at different time and temperature 300° C:	
(a) 1 min; (b) 2 min (c) 3 min; (d) 4 min; (e) 5 min.	87
Fig.(34): Deconvolution of absorbance spectra of MoO ₃	
at different time and temperature 325° C:	
(a) 1 min; (b) 2 min (c) 3 min; (d) 4 min; (e) 5 min.	88
Fig.(35): Deconvolution of absorbance spectra of MoO ₃	
at different time and temperature 350° C:	
(a) 1 min; (b) 2 min (c) 3 min; (d) 4 min; (e) 5min.	89
Fig.(36): Deconvolution of absorbance spectra of MoO ₃	
at different time and temperature 400° C:	
(a) 1 min; (b) 2 min (c) 3 min; (d) 4 min; (e) 5 min	90
Fig.(37): The spectral weights of the	
E22 and E23 absorption bands as a	
function of time for MoO ₃ Samples	91
Fig. (38): Absorption spectra of the MoO_3	
thin films and the fit with Lorentz functions	
at different temperature:	

(a) 200 °C; (b) 250 °C; (c) 300° C; (d) 325 °C;	
(e) 350 °C; (f) 400 °C at constant spray	
time 3 minutes.	92
Fig. (39): The fit with Lorentz functions	
of the as deposited MoO ₃ thin films	
at different substrate temperature:	
(a) 200° C; (b) 250° C; (c) 300° C; (d) 325° C;	
(e) 350° C and at (f) 400°C.	94
Fig. (40): (a) Temperature dependence	
of the transition energies of sub-band	
E1 and E2 resolved from band at longer wavelengt	h.
(b) The spectral weights of the E1 and E2 absorption	n
bands as a function of temperature. The calculated	
(c) refractive index n(ω) and	
(d) Extinction coefficient k (ω) obtained	
by fitting the absorption spectrum.	98
Fig.(41): Transmission spectra for MoO ₃ deposited	
at 300°C and 1 min. irradiated by UV	
radiation 45 min and 145 min.	100
Fig.(42): Optical absorption spectra of	
as deposited at 300°C,1min irradiated by	
uv radiation 45 min. and 145 min.	100
Fig.(43): Quality control for MoO ₃ irradiated by UV light	
(a) Un exposed (b) exposed 15 min UV light and	
(c) Exposed 45 min UV light	101
Fig. (44): Fitting and deconvolution optical	
absorption spectra of as deposited at 300°C,	
1 min irradiated by UV radiation 45 min.	

Contents

and 145 min.	104
Fig.(45) Diffusion model of protons	
in the thin film of MoO_3 during	
the photochromic process.	105
Fig.(46) Scheme of color centers in the TMO oxide films:	
a) bulk center (1), b) surface center (2),	
c) extended surface center (3).	106