A Comparative Study Between Ultrasound vs Nerve Stimulator for Femoral (3 in 1) and Sciatic Nerve Blocks for Major Knee Surgeries

Thesis Submitted for partial fulfillment of the M.D. degree in anesthesia

By

Mohamed Ahmed Ahmed Tolba

M.B;B.Ch., M.Sc., Anesthesia - Ain Shams University

Supervised by

Prof. Dr. Galal Abu El Seoud Saleh

Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Prof. Dr. Mohsen Abd El Ghany Basuoni

Professor of Anesthesia and Intensive care Faculty of Medicine – Ain Shams University

Prof. Dr. Azza Atef Abd El Aleem

Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Ain Shams University Faculty of Medicine 2015

ڹؿٚؠؙٳؖڛؙٲڵڿ<u>ڿڗٛٳڵڿۼؾؙؽ</u>

وقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ وَقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ ورَسُولُهُ والمُؤْمِنُونَ صدق الله العظيم

سورة التوبة آية (105)

First of all, all gratitude is due to **ALLAH** for blessing this piece of work, until it has reached its end, as a part of His generous support throughout my life.

I can hardly find the words to express my gratitude to **Professor Dr. Galal Abu El Seoud Saleh**, Professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his close supervision, continuous help and encouragement throughout the whole work.

I'm also deeply indebted to **Professor Dr. Mohsen Abd El Ghany Basuoni**, professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his guidance, continuous assistance, tremendous help and close supervision.

I'm also indebted to **Professor Dr. Azza Atef Abd El Aleem,** Professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his great effort, guidance and precious advices. That's beside his continuous support.

It has been a great honour working under their guidance and supervision.

Contents

Content	Page
Introduction and Aim of The Work	1
Review of Literature	
Chapter 1: Anatomical Consideration	5
Chapter 2: pain pathway	11
Chapter 3: pharmacology of local anesthetics	27
Chapter 4: Techniques for Femoral (3 in 1) and	
Sciatic Nerve blocks	50
Patients and methods	73
Results	83
Discussion	98
Conclusion	108
Summary	109
References	111
Arabic Summary	1

List of Abbreviations

Abb.	Stands for
%	Percent
γ	Gamma
δ	Delta
к	Kappa
<	Less than
>	More than
0	Degree
μ	Mue/Micron
μg	Microgram
ASA	American Society of Anesthesiologists
BA	Bronchial Asthma
BMI	Body mass index
Bpm	Beats per minute
Br	British
CAD	Coronary artery disease
Cm	Centimeter
CNS	Central Nervous System
CVS	Cardiovascular system
dB	Decibels
DM	Diabetes mellitus
DRG	Dorsal Root Ganglion
ECG	Electrocardiogram
Eds	Editors
et al.	And colleagues
FPS-R	Faces Pain Scale-Revised

Abb.	Stands for
Fig	Figure
GABA	Gamma Amino Butyric Acid
HR	Heart Rate
Hrs	hours
HTN	Hypertension
Hz	Hertz
IV	Intravenous
J.	Journal
Kg	Kilogram
L_{1-5}	Lumbar spinal roots
LA	Local Anesthetics
LC	locus coeruleus
mA	milliamperes
MAP	Mean Arterial Blood Pressure
Mg	milligram
Ml	milliliter
Mm	millimeter
mmHg	Millimeters of Mercury
NS	Nerve stimulator
NMDA	N-Methyl-D-Aspartate
NRM	Nucleus raphe magnus
NRS	Numerical rating scale
PABA	Para-Aminobenzoic Acid
PAG	Peri-Aqueductal Gray
PNBs	Peripheral Nerve Blocks
PSIS	Posterior superior iliac spine
OR	Operating room

Abb.	Stands for
RA	Rheumatoid Arthritis
RHD	Rheumatic Heart Diseases
S	Stereoisomer
US	Ultrasound
VAS	Visual Analogue Scale
VGSC	Voltage gated sodium channel
Vs.	Versus
WDR	Wide dynamic range
A	Alpha
В	Beta

List of Figures

Fig no.	Illustrates	Page
1	The distribution of the femoral nerve in the thigh	6
2	The distribution of the obturator nerve	7
3	Sciatic nerve anatomy	10
4	Dorsal horn laminae	12
5	Rostral projections of nociceptive progression.	13
6	Original gate control theory of pain modulation represented schematically	20
7	Supraspinal modulation of pain	23
8	0-10 Numerical pain rating scale	25
9	Wong-Baker FACES Pain Rating Scale	26
10	General structure of all local anesthetic molecules showing three parts	27
11	Plasma concentration curve of lidocaine following IV administration	32
12	Molecule with a chiral center and its enantiomers	38
13	Current contour lines around uninsulated and insulated needles.	52

Fig no.	Illustrates	Page
14	The in-plane (right) and out-of-plane (left) needle approaches for needle insertion and ultrasonographic	57
15	Femoral nerve block	58
16	Ultrasonography-guided femoral nerve block	59
17	Sciatic nerve block, parasacral access	61
18	Sciatic nerve block, Transgluteal approach Puncture site	63
19	Transverse scan of sciatic nerve	64
20	Plexygon [®] , Vygon.	75
21	Locoplex [®] , Vygon, Ecouen, France.	76
22	LOGIQ [®] e, GE Healthcare, Milan, Italy.	78
23	Visioplex [®] , Vygon, Ecouen, France.	79
24	Box plot showing the number of attempts required to perform the block	85
25	Time required performing the procedure in both study groups.	87
26	Time to onset of sensory and motor blockade in both study groups	88
27	Box plot showing the Bromage score in both study groups	89

Fig no.	Illustrates	Page
28	Mean arterial pressure (MAP) in both study groups	90
29	Heart rate in both study groups	92
30	Postoperative pain scores in both study groups	94
31	Incidence of occurrence of complications in both study groups	97

List of Tables

Table No.	Title	Page
1	Branches of femoral nerve	5
2	Classification of Peripheral Nerves According to Fiber Size and Physiological Properties	15
3	Physicochemical properties of clinically used local anesthetics	35
4	Patients' characteristics and duration of surgery in both study groups	84
5	Details of the block procedure in both study groups	87
6	Mean arterial pressure in both study groups	91
7	Heart rate in both study groups	93
8	Failure rate of both groups	93
9	Pain score in both study groups	95
10	Time of 1 st dose of rescue analgesic in both study groups	95
11	Comparison between the two studied groups as regards duration of surgical procedures	96

Introduction

In the past decade, there has been an increased interest in performing lower extremity peripheral nerve blocks (PNBs) because of the potential complications associated with centroneuraxial blockade, i.e. increased risk of epidural hematoma with new anti-thromboembolic prophylaxis regimens, and transient neurologic symptoms associated with spinal anesthesia. Additionally, evidence that improved rehabilitation outcome may be associated with continuous lower extremity PNBs has stimulated even more interest (*Deschner et al.*, 2009).

The advances in regional techniques for blocks of the lower limb have been driven primarily by the need to produce effective and prolonged analgesia in the postoperative period. Increasingly, modern practice demands a shorter hospital stay, improved patient expectations and early mobilization (*Murray et al.*, 2010).

The first demonstration of nerve stimulation (NS) was performed as early as 1780 by Luigi Galvani on a frog. Galvani touched the nerves of the frog's spinal cord with metal electrodes which caused contractions of the leg muscles. Perthes in 1912 and Pearson in 1955 demonstrated that nerves could be identified by electrostimulation, but it was the work of Greenblatt et al. in 1962 that introduced the nerve stimulator (NS) into clinical practice (Gleed and Ludders, 2008).

☐ Introduction and Aim of The Work

The key requirement for successful regional anesthetic blocks is to ensure optimal distribution of local anesthetic (LA) around nerve structures. This goal is most effectively achieved under sonographic visualization. Over the past decade, the Vienna study group has demonstrated that ultrasound guidance (US) can significantly improve the quality of nerve blocks in almost all types of regional anesthesia. In addition, complications such as intraneuronal and intravascular injection (IVI) can be avoided (Marhofer et al., 2005).

Vision is the best of the primary human senses. US allows the anesthesiologist to evaluate complex and varied neural anatomy prior to needle insertion. In addition to providing real time guidance to the needle towards a nerve or a plexus. US allows anesthesiologist to witness the spread of local anesthetic after initiation of injection. Ultimately, it is the visual confirmation of the perineural spread of the local anesthetic that generates a rapid and successful block (Sites et al., 2007).

US technology will continue to evolve, providing further improvements in portability, image processing, and display. Similar to the computer and telephone industry, US equipment will likely become smaller, highly mobile, potentially cordless, and available for use at the point of care anywhere at anytime. Enhanced imaging capability of compact machines may one day

☐ Introduction and Aim of The Work

rival those of the large cart-based machines, and lower prices and user-friendly simplicity will improve accessibility. If US is to become an integral part of regional anesthesia, future guidelines and teaching curricula must be established for proper training (*Bodenham*, 2006).

☐ Introduction and Aim of The Work

Aim of The Work

The aim of the study is to compare ultrasound guided femoral (3 in 1) and sciatic nerve blocks with nerve stimulator regarding safety, efficacy, and rate of success & failure.