

Synthesis of Some Environmentally Safe Bis-Sulfonamide with Surface Biological Activities

A Thesis submitted By

Mohamed Sayed Sayed Saed Alsanan.

M.Sc. Chemistry, Zagazig University, 2005

To

Chemistry Department Faculty of Science Ain Shams University

For

The Degree of Doctor of Philosophy (Chemistry)

تخليق بعض السلفونأميدات الآمنة بيئيا ذات نشاط سطحي بيولوچي

رسالة مقدمة من

محمد سيد سيد سعيد السنان

ماجستير في الكيمياء (٢٠٠٥) كلية العلوم - جامعة الزقازيق

للحصول على

درجة دكتوراةالفلسفة في العلوم (كيمياء عضوية)

الي

جامعة عين شمس- كلية العلوم قسم الكيمياء LIST OF FIGURE

LIST OF FIGURES

Figure (1): Structural formulas of Prontosil and its metabolite in	
human body (Sulfanilamide)	2
Figure (2): Preperation of sulfonamide from sulfonyl halide with	
ammonia or amines	.3
Figure (3): Steps of mechanism of chlorosulfonylation reaction	4
Figure (4): Reaction of hydrocarbon with sulfuryl chloride	
(SO ₂ Cl ₂) in the presence of aluminum chloride (AlCl ₃)	.6
Figure (5): Reaction of sulfur compound with chlorine in water or	
acetic acid solution	7
Figure (6): Reaction of carbon-sulfur bond with chlorine	.7
Figure (7): Basic structure of sulfonamode and PABA	.9
Figure (8): Schematic illustration of the mechanism of action of	
Sulfanilamide (as sulfonamide)1	0
Figure (9): Mechanism of microorganism inactivation by	
biocides1	5
Figure (10): Scanning electron microscopy (SEM) micrograph of	
Desulfovibrio sp. on galvanized steel1	6
Figure (11): EDS analysis of the corrosion products formed on the	
galvanized steel surfaces	7
Figure (12): The main classes of pharmacological agents developed	
from Sulfanilamide2	1
Figure (13): An on-line system monitors the changing oxidant demand in	1
the cooling water system and automatically feeds the	
required amount of oxidizing biocide to achieve and maintai	in
system cleanliness2	7
Figure (14): Schematic illustration of surfactant molecules3	4

LIST OF FIGURE II

Figure (15): Schematic representation of surfactant molecules	
at surface and surfactant micelle in bulk liquid	35
Figure (16): Different molecular assemblies of surfactants	38
Figure (17): Schematic representation of the structure of an aqueous	
micelle with two regions	39
Figure (18): Examples of polar lipids	42
Figure (19): Schematic illustration of the various types of	
surfactants	44
Figure (20): Structure of sodium salt fatty acid as anionic	
surfactant	44
Figure (21): Structure of sodium salt sulfonic acid as anionic	
surfactant	45
Figure (22): Alkaline hydrolysis of fats and oils forming fatty	
acid salt (saponification reaction)	46
Figure (23): Reaction of fatty alcohols with chlorosulfonic acid	
to produce sulfate surfactant	47
Figure (24): The molecular structure of alkyl ether sulfate	48
Figure (25): Chemical structure of some commonly used cationic	
Surfactant	50
Figure (26): Chemical structure of nonionic surface-active	
agent	52
Figure (27): Chemical structure of some commonly used nonionic	
surfactant	53
Figure (28): Chemical structure of some typical Zwitterionic	
Surfactants	55
Figure (29): Illustration of a gemini surfactant	
Figure (30):Bolaform surfactant	
Figure (31): polymeric surfactant.	

LIST OF FIGURE

Figure (32): Different molecular architectures of Figure
surfactants60
Figure (33): Surface tension versus bulk surfactant concentration61
Figure (34): FTIR-spectrum of 1-chlorobenzene-2,4-disulfonyl
dichloride (1)76
Figure (35): FTIR-spectrum of 6-chlortouene-2,4-disulfonyl
dichloride (2)
Figure (36): FTIR-spectrum of dibenzothiophene-2,8-disulfonyl
dichloride 5,5-dioxide (3)
Figure (37): FTIR-spectrum of 1-chlorobenzene-2,4-
bis[dodecylsulfonamide] (1a)83
Figure (38): FTIR-spectrum of 1-chlorobenzene-2,4-
bis[hexadecyl sulfonamide] (1b)84
Figure (39): FTIR-spectrum of 1-chlorobenzene-2,4-
bis[(N,N-diethyl-1,4-phenylenediamine)
sulfonamide] (1c)85
Figure (40): H-NMR spectrum of of 1-chlorobenzene-2,4-
bis[dodecylsulfonamide] (1a)86
Figure (41): ¹ H-NMR spectrum of 1-chlorobenzene-2,4-
bis[hexadecyl sulfonamide] (1b)87
Figure (42): ¹ H-NMR spectrum of 1-chlorobenzene-2,4-
bis[(N,N-diethyl-1,4-phenylenediamine)
sulfonamide] (1c)88
Figure (43): FTIR-spectrum of 6- chlorotoluene-2,4-
bis[dodecyl sulfonamide] (2a)92
Figure (44): FTIR-spectrum of 6- chlorotoluene-2,4-
bis[hexadecyl sulfonamide] (2b)93

LIST OF FIGURE IV

Figure (45): FTIR-spectrum of 6- chlorotoluene-2 4-
bis-[(N,N-diethyl-1,4-phenylenediamine)
sulfonamide] (2c)94
Figure (46): ¹ H-NMR spectrum of 6- chlorotoluene-2,4-
bis[dodecyl sulfonamide] (2a)95
Figure (47): ¹ H-NMR spectrum of 6- chlorotoluene-2,4-
bis[hexadecyl sulfonamide](2b)96
Figure (48): FTIR-spectrum of 5,5-dioxo dibenzothiophene-2,8-
bis [dodecyl sulfonamide] (3a)100
Figure (49): FTIR-spectrum of, 5,5-dioxo dibenzothiophene-2,8-
bis [hexadecyl sulfonamide] (3b)101
Figure (50): FTIR-spectrum of 5,5-dioxo dibenzothiophene-
2,8- bis [(N,N-diethyl-1,4-phenylenediamine)
sulfonamide] (3c)102
Figure (51): FTIR-spectrum of 5,5-dioxo dibenzothiophene-
2,8-bis[(N,N-diethyl-1,4-ethylenediamine)
sulfonamide] (3d)
Figure (52): ¹ H-NMR spectrum of of 5,5-dioxo
dibenzothiophene-2,8- bis [dodecyl
sulfonamide] (3a)104
Figure (53): ¹ H-NMR spectrum of, 5,5-dioxo dibenzothiophene
-2,8- bis [hexadecyl sulfonamide] (3b105
Figure (54): ¹ H-NMR spectrum of 5,5-dioxo dibenzothiophene
-2,8- bis [(N,N-diethyl-1,4-phenylenediamine)
sulfonamide] (3c)
Figure (55): Surface tension profile of (1a, 2a and 3a) at 35°
Figure (56): Surface tension profile of (1b, 2b and 3b) at 35°

LIST OF FIGURE V

Figure (57): Inhibition zone diameter (mm) of (1a, 2a, 3a) against	
desulfomonas pigra	116
Figure (58): Inhibition zone diameter (mm) of (1b, 2b, 3b,	
1c) against desulfomonas pigra	117
Figure (59): Inhibition zone diameter (mm) of (1c, 2c, 3d)	
against desulfomonas pigra	118
Figure (60): percentages of SRB inhibition using 1a, 2a, 3a	100
and 2c	123

List of publications

NOVEL SURFACTANTS

TS-110117 - 28.1.11 dk/stm köthen

A. M. Badawi¹, D. E. Mohamed¹, A. A. Hafiz¹, S. M. Ahmed¹, Y. M. Gohar², E. A. Soliman³ and M. S. A. Sanan⁴

Synthesis of Some Novel Sulfonamide Derivatives and Investigating their Biocidal Activity in Cooling Towers

A novel series of dibenzothiophenedioxide sulphonamide derivatives were synthesized and tested as antimicrobial agents. The chemical structures of the prepared compounds were confirmed by micro elemental analysis, fourier transform infrared (FT-IR) and proton nuclear magnetic resonance spectroscopy (H-NMR). The surface parameters of two of the prepared compounds were determined at 35 °C including, surface tension, effectiveness, maximum surface excess and minimum surface area. Also the standard free energy of micellization and adsorption were recorded. The results showed that the prepared sulphonamides have good surface properties and effective antimicrobial activity against thirty three test organisms isolated from cooling towers.

Key words: Sulphonamides, antimicrobial agents, cooling towers, surface activity

Alexandria National Refining & Petrochemical Co. (ANRPC), Alex., Egypt

Applied Surfactants Laboratory, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt

Microbiol. Div., Faculty of Science, Alex. University, Alex., Egypt

Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Mansoura Journal of Chemistry Vol. 37 (2), December, 2010.

NOVEL DISULFONAMIDE BASED-COMPOUNDS: SURFACE STUDIES AND ANTIMICROBIAL PROPERTIES AGAINST SULFATE REDUCING BACTERIA

A. M. Badawi*, Dalia E. Mohamed*, Amal A. Hafiz*, Sahar M. Ahmed*, Yousry M. Gohar**, E. A. Soliman***, M. S. Said****

- *Applied Surfactants Laboratory, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt.
- ** Microbiol. Div., Fac. Sci., Alex. Univ., Alex., Egypt.
- *** Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
- **** Alexandria National Refining & Petrochemical Co. (ANRPC), Alex., Egypt.

(Received:4/10/2010)

ABSTRACT

This study reports the effect of the structural changes of bisulfonamide based-compounds on the surface parameters and antimicrobial activity. In order to achieve this goal, a novel series of chlorobenzene and chlorotoluene disulphonamide derivatives were synthesized. Their chemical structures were confirmed by using elemental analysis, Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The surface parameters including critical micelle concentration (CMC), effectiveness (π_{CMC}) , maximum surface excess (Γ_{max}) and minimum surface area (Amin) were determined at 55°C. Also the standard free energies of micellization (ΔG_{mic}°) and adsorption (ΔG_{ads}°) were recorded. Finally the antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds, measured against sulphate reducing bacteria (SRB) using both the diffusion disc and the serial dilution method.

Keywords

disulfonamide based-surfactants, antimicrobial agents, SRB, surface activity

List of publications

NOVEL SURFACTANTS

TS-110117 - 28.1.11 dk/stm köthen

A. M. Badawi¹, D. E. Mohamed¹, A. A. Hafiz¹, S. M. Ahmed¹, Y. M. Gohar², E. A. Soliman³ and M. S. A. Sanan⁴

Synthesis of Some Novel Sulfonamide Derivatives and Investigating their Biocidal Activity in Cooling Towers

A novel series of dibenzothiophenedioxide sulphonamide derivatives were synthesized and tested as antimicrobial agents. The chemical structures of the prepared compounds were confirmed by micro elemental analysis, fourier transform infrared (FT-IR) and proton nuclear magnetic resonance spectroscopy (H-NMR). The surface parameters of two of the prepared compounds were determined at 35 °C including, surface tension, effectiveness, maximum surface excess and minimum surface area. Also the standard free energy of micellization and adsorption were recorded. The results showed that the prepared sulphonamides have good surface properties and effective antimicrobial activity against thirty three test organisms isolated from cooling towers.

Key words: Sulphonamides, antimicrobial agents, cooling towers, surface activity

Alexandria National Refining & Petrochemical Co. (ANRPC), Alex., Egypt

Applied Surfactants Laboratory, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt

Microbiol. Div., Faculty of Science, Alex. University, Alex., Egypt

Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Mansoura Journal of Chemistry Vol. 37 (2), December, 2010.

NOVEL DISULFONAMIDE BASED-COMPOUNDS: SURFACE STUDIES AND ANTIMICROBIAL PROPERTIES AGAINST SULFATE REDUCING BACTERIA

A. M. Badawi*, Dalia E. Mohamed*, Amal A. Hafiz*, Sahar M. Ahmed*, Yousry M. Gohar**, E. A. Soliman***, M. S. Said****

- *Applied Surfactants Laboratory, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt.
- ** Microbiol. Div., Fac. Sci., Alex. Univ., Alex., Egypt.
- *** Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
- **** Alexandria National Refining & Petrochemical Co. (ANRPC), Alex., Egypt.

(Received:4/10/2010)

ABSTRACT

This study reports the effect of the structural changes of bisulfonamide based-compounds on the surface parameters and antimicrobial activity. In order to achieve this goal, a novel series of chlorobenzene and chlorotoluene disulphonamide derivatives were synthesized. Their chemical structures were confirmed by using elemental analysis, Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The surface parameters including critical micelle concentration (CMC), effectiveness (π_{CMC}) , maximum surface excess (Γ_{max}) and minimum surface area (Amin) were determined at 55°C. Also the standard free energies of micellization (ΔG_{mic}°) and adsorption (ΔG_{ads}°) were recorded. Finally the antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds, measured against sulphate reducing bacteria (SRB) using both the diffusion disc and the serial dilution method.

Keywords

disulfonamide based-surfactants, antimicrobial agents, SRB, surface activity

LIST OF TABLES

LIST OF TABLES

Table (1): Dipole Moments and Reed Parameters of Sulaonamide12
Table (2): Examples of Current Therapeutic Use of Sulfonamides13
Table (3): The used chemicals and their sources
Table (4): Specifications of the synthesized compounds (1-3)74
Table (5): FTIR spectroscopic analysis of the synthesized
disulfonyldichloride derivatives (1-3)
Table (6): specifications and elemental analyses of
the synthesized derivatives (1a - 1c)80
Table (7): FTIR spectroscopic analysis of the synthesized
chlorobenzene disulfonamide derivatives (1a - 1c) 80
Table (8): ¹ H-NMR spectral data for chlorobenzene
disulfonamide derivatives (1a - 1c)81
Table (9): specifications and elemental analyses of the
Synthesized derivatives (2a - 2c)89
Table (10): FTIR spectroscopic analysis of the synthesized
6-chlorotoluene disulfonamide derivatives (2a - 2c)90
Table (11): ¹ H-NMR spectral data for 6-chlorotoluene disulfonamide
derivatives (2a - 2c)90
Table (12): specifications and elemental analyses of
the synthesized derivatives (3a - 3d)97
Table (13): FTIR spectroscopic analysis of the synthesized
dibenzothiophene disulfonamides derivatives (3a-3d)98
Table (14): ¹ H-NMR spectral data for dibenzothiophene
disulfonamides derivateves (3a-3d)98
Table (15): Surface tension values of the synthesized surfactants at
concentration = $1 \times 10^{-3} - 6 \times 10^{-3} \text{ M} / \text{L} \text{ at } 35 ^{\circ} \text{C}110$

LIST OF TABLES

Table (16): Surface parameters of the prepared surfactants	
at 35 °C	.114
Table (17): Antimicrobial activities of the synthesized compounds	
against SRB: Sulfate reducing bacteria	
(Desulfomonas Pigra)	119
Table (18): SRB data of both Chlorobenzene and Chlorotoluene	
disulfonamide derivatives	120
Table (19): SRB inhibition of tested biocides after 48 h	121
Table (20): The percentages of SRB inhibition using	
1a, 2a, 3a and 2c	122
Table (21): Spectrum of inhibitory activity of the prepared	
compounds against 33 microorganisms,	
expressed as MIC (µg/ml)	127

CHAPTER 1

INTRODUCTION

PART I

A. SULFONAMIDES

The sulfonamides are one of the groups of organosulfur compounds. They are also called amide derivatives of sulfonic acids. These compounds contain RSO₂NH₂ group. They are a family of broad-spectrum synthetic bacteriostatic antibiotics. They inhibit multiplication of bacteria but do not actively kill bacteria except with high concentration. They have been used against most gram-positive and many Gram-negative organisms, some fungi and certain protozoa. Mixtures of sulfonamides with other drugs have also been used in various infections. Some of aromatic/heterocyclic sulfonamides and their derivatives showed very high inhibitory activity against carbonic anhydrase (CA) isozymes. A large number of structurally novel sulfonamide derivatives have been reported as anti-tumor and remarkable antiviral activity such as anti-HIV (ADIS). [Zareef, (2006)]

A.1. BACKGROUND:

Sulfonamides are one of the groups chemotherapeutic agents commonly referred to as Sulfa drugs discovered in the 1930's.Exactly in 1935, led [Domagk.,(1935)] to discover that a red dye, 4'-sulfamy1-2,4-diaminoazo-benzene, which was later named prontosil Figure (1). [Trefouel, (1935)] in France made the important observation that the antibacterial activity was not due directly to prontosil, but rather to a metabolite formed in the animal by the reduction of the diazyl bond of the

prontosil. This metabolite was identified as sulfanilamide. In 1939, Domagk was awarded the Noble prize in medicine for his classic discovery of what was termed in 1940 "the only known chemicals capable of curing serious systemic bacterial infections in man in doses allowing a satisfactory margin of safety" [Goodman and Gilman (1941)].

Figure 1: Structural formulas of Prontosil and its metabolite in human body (Sulfanilamide)

The observation by **Domagk** that the red dye prontosil had a high antibacterial activity, coupled with systematic efforts to identify the active structure, led to the opening of a new chapter in chemotherapy.

Domagk discovery quickly resulted in the development of a variety of sulfonamides, all of which were essentially substituted sulfanilamides. Sulfa drugs were found to be effective against such grave bacterial infections as meningitis, pneumonia and blood poisoning it saved thousands of lives in World War II (1939-1945).

A.2. Synthesis of sulfonamides:

The most common method used for preparation of sulfonamides is by the reaction of appropriate sulfonyl halide, either aliphatic or aromatic, with ammonia or amines. Therefore, heterocyclic sulfonamides were similarly prepared through the reaction of heterocyclic sulfonyl halide with ammonia or amines. This reaction is showed in Figure (2).