

Microbial Production of β-Carotene by Utilization of Agro-Industrial by-Products

By

HALA MOHAMED MOHAMED ATIA SANAD

B.Sc. Microbiology and chemistry (2008)

Α

Thesis submitted for

Partial fulfillment of the requirements for

the degree of Master of Science in

Microbiology

Botany Department
Faculty of Women for Art, Science & Education
Ain Shams University

Cairo, Egypt

2016

Approval Sheet

Microbial Production of β-Carotene by Utilization of Agro-Industrial by-Products

By

HALA MOHAMED MOHAMED ATIA SANAD

B.Sc. Microbiology and chemistry (2008)

Faculty of Women for Art, Science &Education

Ain Shams University

This	thesis	for	M.Sc.	degree	has	been	approved	bv:

1-Prof. Dr. El Shahat Mohamed Ramad	dan
Emeritus Professor of Microbiolog	y, Faculty of Agriculture, Ain
Shams University	
2- Prof. Dr. Mona Abdel Tawab Esaw	y
Professor of Microbiology, National F	Research Centre
3- Prof. Dr. Ali Abdel-Aziz Ali	•••••
Professor of Food Technology, Face	ulty of Agriculture, Ain Shams
University	
4- Dr. Sherif Moussa Husseiny	•••••
Associate Professor of Microbiology,	Faculty of Women for Art,
Science & Education, Ain Shams Uni	versity

Date of Examination: 24 / 2 / 2016

Microbial Production of β-Carotene by Utilization of Agro-Industrial by-Products

By

HALA MOHAMED MOHAMED ATIA SANAD

B.Sc. Microbiology and chemistry (2008)
Faculty of Women for Art, Science & Education
Ain Shams University

Under supervision of:

Dr. Sherif Moussa Husseiny

Associate Professor of Microbiology, Faculty of Women for Art, Science & Education, Ain Shams University

Prof. Dr. Ali Abdel-Aziz Ali

Professor of Food Technology, Faculty of Agriculture, Ain Shams University

Prof. Dr. Ahmed Abdelwahab M. Abdelhafez

Professor of Microbiology, Faculty of Agriculture, Ain Shams University

Acknowledgment

Thanks to Allah, the great and almighty for his uncountable and infinite graces.

I wish to express my great and deepest gratitude and thanks to all people who helped me to complete this thesis. Special thanks are due to:

- **Dr. Sherif Mossa husseiny,** Associate Prof. of Microbiology, Faculty of Women for Art, Science & Education, Ain Shams University for the best acquisition, continuous supervision, kind encouragement, sincere help criticism and precious advices during the progress of thesis work and the preparation of the manuscript.
- **Prof. Dr. Ali Abdel Aziz Ali**, Professor of Food Technology, Faculty of Agriculture, Vice President for Graduate Studies and Research, Ain-Shams University for his close supervision and personal and scientific help during the period of this study.
- **Prof. Dr. Ahmed Abdelwahab Abdelhafez**, Professor of microbiology, Faculty of Agriculture, Ain Shams University for the facilities he offered to finish this work.

ABSTRACT

Hala Mohammed Mohamed Atia Sanad: Microbial Production of β-Carotene by Utilization of Agro-Industrial by-Products. Unpublished M.Sc. Thesis, Botany Department, Faculty of Women for Art, Science &Education, Ain Shams University, 2016.

Beta-carotene, an important fat soluble pigment, is one of the most common carotenoids and the biosynthetic precursor of vitamin A.

The current study aimed to produce beta-carotene by effective microorganism, utilizing agro-industrial by-products as cheap material. Three agro-industrial by-products, namely rice bran, molasses, sugar cane bagasse, were used for β -carotene production using three microorganisms: *Rhodotorula glutinis* ATCC 4054, *Sphingomonas paucimobilis* ATCC 10829, *Serratia marcescens* ATCC 27117 to choose the best microorganisms which produce high concentration of β -carotene.

To optimize physical and nutritional parameters for β -carotene production by *Rhodotorula glutinis* ATCC 4054 and *Serratia marcescens* ATCC 27117, using statistical approach of Response Surface Methodology (RSM) Followed by scale-up of the operation under optimized conditions.

Beta-carotene was optimized using two step approach. First, a quick identification of important factors, like carbon and nitrogen source by simple screening experiment, and second application of complex RSM for further optimization. The optimum conditions for β-carotene production by *R. glutinis* were; sucrose 18.6g/L, initial pH at 5.4, KH₂PO₄ 1.01g/L and NaCl 0.66 g/L to achieve a β-carotene content from 1.23mg/kg rice bran to 3.20 mg/kg and by *S. marcescens* were Sucrose 2.5 g/L, peptone 7.8 g/L and pH at 6.7 to achieve a β-carotene content from 1.1mg/L molasses to 2.24 mg/L.

Plackett-Burman experimental design (PBD) was used for screening variables to elevated β -carotene production and Central Composite Design was proceeded to obtain main, quadratic and interaction effect of significant factors.

The produced β -carotene after scale-up under optimized conditions was purified and analyzed by Thin layer chromatography, High performance liquid chromatography and Gas chromatography-Mass spectroscopy.

The structure of beta-carotene was determined by Fourier transform infrared spectroscopy and Proton magnetic resonance. From quantitative analysis by HPLC, β -carotene had purity 68.2084% compared with standard beta-carotene and the concentration of β -carotene equal 89.06 mg/100g yeast cell.

Keywords: β-carotene, Agro-industrial by-products, *Rhodotorula glutinis*, *Sphingomonas paucimobilis*, *Serratia marcescens*, RSM, Plackett-Burman Design, Central Composite Design, TLC, HPLC, Gas chromatography-Mass spectroscopy, Fourier transform infrared spectroscopy, Proton magnetic resonance.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	viii
ABBREVIATION	ix
1-INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2.1. Microbial pigments	4
2.2. Carotenoids	6
2.3. Chemistry and classification of Carotenoids	7
2.3.1. Carotenes and xanthophyll's	11
2.3.1.1. β-Carotene	11
2.4. Physical and chemical properties	13
2.5. Functions of carotenoids	13
2.6. Absorption and metabolism of carotenoids	15
2.6.1- Pathway of carotenoid absorption and metabolism	15
2.7. Biosynthesis of carotenoids.	19
2.8. Carotenoids production by Microorganisms.	23
2.9. Agro-Industrial By-products.	25
2.10. Semi- Solid-State Fermentation.	26
2.11. Factors affecting the cultivation of <i>Rhodotorula glutinis</i>	27
and β -carotene production.	21
2.12. Optimization of β-carotene production.	28
2.12.1. One-variable-at-a-time approach.	28
2.12.2. Factorial Design.	28
2.12.2.1. Plackett and Burman's Design.	29
2.12.3. Response Surface Methodology.	30
2.12.3.1 Central Composite Design.	31
2.13. Purification and structure determination of β -carotene.	32
3- MATERIALS AND METHODS	37
3.1. Selected Microorganisms.	37
3.2. Microbial media.	37

3.3. Agro-industrial by-products.	38
3.4. Analytical method of by-products.	39
3.5. Comparison of β-carotene production by <i>R. glutinis</i> , <i>S. marcescens</i> and <i>Sph. paucimobilis</i> .	40
3.6. Standard inoculum.	41
3.7. β-carotene extraction and determination.	41
3.7.1. Extraction of β-carotene from yeast biomass.	41
3.7.2. Extraction of β-carotene from <i>Sph. paucimobilis</i> biomass.	42
3.7.3. Extraction of β-carotene from <i>S. marcescens</i> biomass.	42
3.7.4. Determination of β-carotene.	43
3.7.5. Determinations of Viable Count and Dry Biomass:	43
3.8. Optimization of β-carotene Production by <i>R. glutinis</i> ATCC 4054 and <i>S. marcescens</i> ATCC 27117.	44
3.8.1. Screening of carbon and nitrogen sources affecting β -carotene production by R . <i>glutinis</i> using one-variable at-a-time approach.	44
3.8.2. Statistical analysis.	46
3.8.3. Statistical screening of nutritional and physical parameters by <i>R. glutinis</i> on rice bran using plackett–burman (PBD) Design:	46
3.8.4. Central Composite Design of Response Surface Methodology (RSM) for optimization of nutritional and physical parameters for β-carotene production by <i>R. glutinis</i> .	50
3.8.5. Screening of carbon and nitrogen sources affecting β-carotene production by <i>S. marcescens</i> using one-variable at-a-time approach.	54
3.8.6. Statistical screening of nutritional and physical parameters by <i>S. marcescens</i> on molasses using plackett–burman (PBD) Design.	55
3.8.7. Central Composite Design of (RSM) for optimization of nutritional and physical parameters <i>S.marcescens</i> on molasses for β-carotene production.	59
3.9. Purification and structure determination of β -carotene from <i>R. glutinis:</i>	62
3.9.1. TLC Analysis and purification of the pigment	63
3.9.2. TLC Analysis of carotenoids with Scanning Densitometry	64
3.9.3. High Performance Liquid Chromatography (HPLC).	65
3.9.4. Gas chromatography–Mass spectrometry (GC.MS).	66

3.9.5. Structure Determination of the Pigment.	67
3.9.5.1. Proton nuclear magnetic resonance (H-NMR).	67
3.9.5.2. Fourier Transform Infrared (FTIR) Spectroscopy.	68
4- RESULTS AND DISCUSSION	69
4.1. Chemical composition of agro-industrial by-products	69
4.2. Comparison of β- production by <i>R. glutinis</i> , <i>S. marcescens</i> and <i>Sph. Paucimobilis</i> on agro-industrial by-products.	70
4.2.1. Growth and β-carotene production of <i>R. glutinis</i> ATCC 4054.	70
4.2.2. Growth and β -carotene production of <i>S. marcescens</i> ATCC 27117.	73
4.2.3. Growth and β-carotene production of <i>Sph. paucimobilis</i> ATCC 10829.	74
4.3. Optimization of β-Carotene production by <i>R. glutinis</i> ATCC 4054.	75
4.3.1. Screening of carbon and nitrogen sources affecting β -Carotene production by <i>R. glutinis</i> using one-variable at-a-time approach.	75
4.3.2. Statistical screening of physical and nutritional factors for β -carotene production by <i>R. glutinis</i> ATCC 4054 on rice bran using Plackett-Burman Design.	78
4.3.3. Central Composite Design of Response Surface Methodology (RSM) for optimization of nutritional and physical parameters for β-carotene production by <i>R. glutinis</i> ATCC 4054.	82
4.4. Optimization of β-Carotene production by <i>S. marcescens</i> ATCC 27117.	91
4.4.1. Screening of carbon and nitrogen sources affecting β -carotene production by <i>S. marcescens</i> using one-variable at-a-time approach.	91

4.4.2. Statistical screening of physical and nutritional factors for β-carotene production by <i>S. marcescens</i> ATCC 27117 on molasses using Plackett-Burman Design:	93
4.4.3. Central Composite Design of Response Surface Methodology (RSM) for optimization of nutritional and physical parameters by <i>S. marcescens</i> ATCC 27117 grown in molasses for β-carotene production.	97
4.5. Purification and structure determination of β -carotene from <i>R. glutinis</i> .	104
5- SUMMARY	123
6- REFERENCES	133
7- Arabic summary	

LIST OF TABLES

No.		Page
1	Concentrations of variables at different levels in Plackett-Burman Design for β -carotene production on rice bran by R . <i>glutinis</i> .	47
2	Plackett - Burman experimental design of 12 trials for eleven variables with actual values for $β$ -carotene production on rice bran by R . <i>glutinis</i> .	49
3	Ranges of the independent variables used in RSM for β -carotene production by <i>R. glutinis</i> .	52
4	Central Composite Design (CCD) of factors in actual value for optimization of variables for β -carotene production by R . <i>glutinis</i> .	53
5	Experimental variable at different levels for β -carotene production by S . $marcescens$ in eleven variable using PB Design.	56
6	Plackett-Burman experimental design matrix for screening of important variables for β -carotene production by S . <i>marcescens</i> .	58
7	Ranges of the independent variables used in RSM for β -carotene production by <i>S. marcescens</i>	60
8	Central composite design (CCD) of factors in actual value for optimization β -carotene production by <i>S. marcescens</i> .	61
9	Chemical composition of agro-industrial by-products	70
10	β-carotene production by <i>R. glutinis</i> and its growth (dry weight, DW) in different agro-industrial by-products, compared with YME medium, incubated at 30°C.	72
11	β -carotene production by <i>S. marcescens</i> ATCC 27117 and its growth (dry weight, DW) in different agro-industrial by-products, compared with NB medium incubated at 30°C.	73
12	β-carotene production by <i>Sph. paucimobilis</i> and its growth (dry weight, DW) in different agro-industrial by-products, compared with Nutrient broth medium incubated at 30°C.	74
13	Effect of carbon sources at different concentrations on β -carotene production and biomass by <i>R. glutinis</i> ATCC added to rice bran incubated for 4 days at 30°C.	77