Polymorphisms of the drug-metabolizing enzyme CYP1A1 and susceptibility to Bcell Non-Hodgkin lymphoma

Thesis

Submitted for partial fulfillment of Master degree in Clinical Pathology By

> Magda Abdel Wahed Desouki M.B.B.Ch.

> > Under supervision of

Dr. Shahira Amin Zayed

Faculty of Medicine Cairo University

Dr. Ola Mohamed **Khorshid**

Prof. of Clinical Pathology Assis.prof. of Medical Oncology National Cancer Institute Cairo University

Dr. Sarah Adel Labib

Lecturer of Clinical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2010

Acknowledgement

I wish to express my deepest gratitude and sincerest thanks to **Dr.**Shahira Amin zayed, Professor of Clinical Pathology, Cairo University for her honest supervision, motherly guidance, and giving me her valuable advices and support throughout the whole work. A sincere appreciation is also expressed to **Dr. Ola Khorshid,** Assistant professor of Medical Oncology, National Cancer Institute, Cairo University for her help in following the work to ensure its valuable level. Great thanks to **Dr. Sarah Adel Labib**, Lecturer of Clinical Pathology, Cairo University for her unlimited help and guidance.

A very special appreciation and thanks for **Dr. Hala Ali**, Professor of Clinical Pathology, Cairo University for her sincere assistance and commitment to make this work successful. At the outset, I extend my sincere gratitude to **Dr. Inas El Attar**, Professor of Biostatistics, National Cancer Institute, Cairo University for her kind and honest assistance.

I would like to thank my family for their continuous and limitless love and support, my husband **Yasser**, my daughter **Judy**, and my dear brothers & sisters. Needless to say, it then all comes back to the parents. Who can do without them? To them I am so grateful that I never ever needed to worry about anything.

I am also grateful to my patients, without their tolerance and cooperation; this piece of work would have never seen light.

ABSRACT

BACKGROUND: The incidence of NHL has been steadily rising as a

possible result of environmental carcinogens exposure. OBJECTIVE: We aimed at

determining whether polymorphisms of drug-metabolizing enzyme CYP1A1

increase susceptibility to B-cell NHL. METHODS: Two CYP1A1 gene

polymorphisms (3801 [T>C] and 4889 [A>G]) were analyzed in 50 DLBCL

patients and 25 controls using polymerase chain reaction-restriction fragment

length polymorphism (PCR-RFLP). RESULTS: CYP1A1*2C allele

OR: 6.1, 95% CI: 2.5-14.95) demonstrated highly significant association with

DLBCL compared to controls. CONCLUSION: CYP1A1*2C is a risk factor for

DLBCL.

KEYWORDS: drug-metabolizing enzyme, CYP1A1, polymorphism, DLBCL.

CONTENTS

List of Abbreviation	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Review of Literature	4
Xenobiotcs	5
• Oxidative Drug Metabolizing enzymes	9
1. Cytochrome P450	9
2. Flavin Monooxygenase	12
 Conjugative Drug Metabolizing enzymes 	13
1. UDP Glycosyletransferases	13
2. Glutathione Transferases	15
3. Sulfotransferases	16
Cytochrome P450	20
Nomenculature	20
• Structure	21
• Site	22
• Induction of CYP450 activity	24
• Evolution of CYP450 genes	27
• Factors involved in drug biotransformation	27

1.Genetic polymorphism	27
2.Disease	28
3. Age	28
4. Concomitant drug	29
• Classification	29
 Functions of some human CYP450 and diseases ca 	aused by
their defects	32
CYP1A1	36
Gene location	36
CYP1A1 polymorphism	36
Methods of Assay of CYP1A1 Gene Polymorphism	40
CYP1A1 and Lymphoma	46
Subjects and Methods	53
Results	76
Discussion	117
Summary and conclusion	127
Recommendations	130
Refrences	131

LIST OF ABBRIVIATION

AHH: Aryl hydrocarbon hydroxylase.

ARNT: Ah receptor nuclear translocator.

ASO: Allele Specific Oligonucleotide.

bp: Base paire.

CBC: Complete blood count.

CLL: Chronic Lymphocytic Leukemia.

CO: Carbon monoxide.

CR: complete remission.

Cth: chemotherapy.

CYP450: Cytochrome P450.

dATP: Deoxy adenine triphosphate.

dCTP: Deoxy cytosine triphosphate.

ddNTP: Dideoxynucleotides triphosphate. **DHEAS:** Dehydro-epiandrosterone sulfate.

DLBCL: Diffuse Large B-cell Lymphoma.

DNA: Deoxyribonucleic acid.

dNTP: Deoxy nucleoside triphosphate.

dTTP: Deoxy thiamine triphosphate.

EDTA: Ethylenediaminetetraacetic acid.

EGF: Epidermal growth factor.

ER: Endoplasmic reticulum.

FAD: Flavin adenine dinucleotide.

FMN: Flavin mononucleotide.

FMO: Flavin mono-oxygenase.

GSTs: Glutathione S-transferases.

KDa: Kilo Dalton.

m RNA: Messenger ribonucleic acid

Msp I: Moraxella species.

NADPH: Reduced Nicotinamide adenine dinucleotide

phosphate.

NAT: N-acetyltransferases.

NF: Nuclear factor.

NHL: Non Hodgkin Lymphoma.

PAPs: 3- phosphadenosine 5′-phosphosulfate.

PAHs: Polycyclic aromatic hydrocarbon.

PCR: Polymerase chain reaction.

PON1: Paraoxonase. **PR:** Partial response.

RFLP: Restriction Fragment length polymorphism.

Rth: radiotherapy

SULTs: Sulfotransferases.

SLL: Small-cell Lymphocytic leukemia.

Taq: Thermus aquaticus.

UADT: Upper Aerodigestive Tract. **UGTs:** UDP glycosyltransferases.

•

LIST OF TABLES

Table No	Page	Title
Table 1	19	The role of enzymes of phases I and II in the
		biotransformation of drugs, toxic substrates
		and carcinogens.
Table 2	29	Classification of Cytochrome P450.
Table 3	66	PCR reaction mixture.
Table 4	77	Personal data of NHL patients.
Table 5	79	Summary of personal data of NHL patients.
Table 6	83	Clinical data of NHL patients.
Table 7	86	Summary of clinical data of NHL patients.
Table 8	94	laboratory data of patients.
Table 9	96	summary of laboratory data.
Table 10	103	Results of PCR-RFLP for single nucleotide
		polymorphisms (SNPs) CYP1A1 4889 A>G
		and CYP1A1 3801 T>C for patients.
Table 11	104	Summary of Results of PCR-RFLP for
		single nucleotide polymorphisms (SNPs)
		CYP1A1 4889 A>G and CYP1A1 3801 T>C
		for patients.
Table 12	106	Results of PCR-RFLP for single nucleotide
		polymorphisms (SNPs) CYP1A1 4889 A>G
		and CYP1A1 3801 T>C for controls.
Table 13	107	Summary of Results of PCR-RFLP for
		single nucleotide polymorphisms (SNPs)
		CYP1A1 4889 A>G and CYP1A1 3801 T>C
		for controls.
Table 14	110	Frequencies of CYP1A1 gene
		polymorphisms, Individually and in
		compination in healthy control and
TD 11 17	114	lymphoma patients.
Table 15	114	Correlation studies.

LIST OF FIGURES

Figure No	Page	Title
Figure 1	26	The role of different P450 enzymes in
		metabolism of drugs
Figure 2	39	Polymorphisms in the human cytochrome
		P450 1A1
Figure 3	41	Restriction Fragment Length polymorphism
Figure 4	43	Use probes to identify DNA sequences
Figure 5	45	DNA sequencing
Figure 6	49	Multistep carcinogenesis model and the role
		of low penetrance gene
Figure 7	62	Diagram to summarize DNA extraction
Figure 8	80	Age distribution among lymphoma patients
Figure 9	80	Sex distribution among lymphoma patients.
Figure 10	88	Site involved with NHL (nodal or extra
		nodal).
Figure 11	88	Distribution of affected areas in NHL
		patients
Figure 12	89	spleen involvement in NHL patients
Figure 13	89	B symptoms in NHL patients
Figure 14	90	PS of NHL patients
Figure 15	90	Stage of NHL in studied patients.
Figure 16	91	IPI of NHL patients.
Figure 17	91	Therapy modalities for NHL patients.
Figure 18	92	Outcome of NHL patients after therapy.
Figure 19	97	Hemoglobin levels among cases with lines
		showing normal values
Figure 20	97	TLC levels among cases with lines showing
		normal values
Figure 21	98	Platelets levels among cases with lines
		showing normal values
Figure 22	98	Bone marrow aspirate or biopsy
Figure 23	100	Gel electrophoresis showing CYP1A1
		4889A>G mutation gene
Figure 24	102	Gel electrophoresis showing CYP1A1 3801

		T>C mutation gene
Figure 25	108	results for CYP1A1 4889
Figure 26	108	results for CYP1A1 3801
Figure 27	111	results of CYP1A1*2C

Introduction

Non-Hodgkin's lymphoma (NHL) is a heterogeneous malignancy of B- and T-cells that involves their uncontrolled clonal expansion in the periphery. B-cell lymphomas make up the majority of cases and, of these, diffuse large B-cell lymphoma (DLCL) and follicular lymphoma (FL) are the two major subtypes (*Skibola et al.*, 2007).

The incidence of non-Hodgkin's lymphoma (NHL) overall has been steadily rising since the 1950s (*Alexander et al.*, 2007). Several environmental and occupational exposures have been suspected as risk factors for NHL. Increased incidence has been consistently observed among farmers (*De Roos et al.*, 2006). Associations with exposure to herbicides and pesticides, benzene and other solvents, dioxins and other potentially DNA-damaging agents have been reported, although the findings have been inconsistent (*Shen et al.*, 2007).

DNA damage in the hematopoietic precursor cell is the essential prerequisite for the development of leukemia and the body has developed a series of mechanism aimed at preventing such damage. It has been suggested that individuals possessing a

modified enzyme ability to metabolize carcinogens are at increased risk of cancer. In other words gene polymorphisms of these enzymes may lead to a more active enzyme form resulting efficient alleles with in carcinogen activation or less detoxification and thus greater susceptibility to cancer (Aydin-Sayitoglu et al., 2006). Humans vary in their ability to detoxify intermediates, which in theory may explain differences in leukemia risk as a result of exogenous exposure (Bajpai et al., *2007*).

The cytochrome P 450 (CYP) superfamily is one of two major phases catalyzing oxidative metabolism. Numerous genetic polymorphisms have been reported for CYP indicating a lack of functional protein or causing either increased or reduced metabolic activity (*Dufour et al.*, 2005). CYP1A1 catalyzes the oxidation of polycyclin aromatic hydrocarbons [PAH] to epoxides. CYP1A1 polymorphism has been studied in relation to cancer susceptibility including hematological malignancies like acute leukemias and chronic myeloid leukemia (*Bajpai et al.*, 2007) and may mediate the risk of non-Hodgkin's lymphoma (*De Roos et al.*, 2006).

Aim of the work

The aim of this work is to investigate the effect of inherited genetic polymorphisms of the drug-metabolizing enzyme CYP1A1 (3801 [T→ C] and 4889 [A→G]) on a predisposition to B-cell Non-Hodgkin's Lymphoma.

Xenobiotics

Xenobiotics are chemical compounds synthesized by man which are not naturally found in living organism and can not normally be metabolized by them.

The xenobiotics have molecular structure and chemical bond sequence not recognized by existing degenerative enzymes.

All organisms are exposed constantly and unavoidably to foreign chemicals, or xenobiotics, which include both man-made and natural chemicals such as drugs, industrial chemicals, pesticides, pollutants, pyrolysis products in cooked food, alkaloids, secondary plant metabolites, and toxins produced by molds, plants and animals. The physical property that enables many xenobiotics to be absorbed through the skin, lungs, or gastrointestinal tract, namely their lipophilicity, is an obstacle to their elimination because lipophilic compounds can be readily reabsorbed. Consequently, the elimination of xenobiotics often depends on their conversion to water-soluble compounds by a process known as biotransformation, which is catalyzed by enzymes in the liver and other tissues.

The activity of these enzymes varies broadly between individuals from absence to high activity and this variance can be responsible for adverse or toxic effects of drugs and xenobiotics or plays a key role in the etiopathology of several malignancies. Their enzymatic activities depend on hereditary