The Possible Role of Nicorandil in Experimentally Induced Atherosclerosis Versus Atorvastatin in Rats

Thesis Submitted for Partial Fulfillment of the M.D in Medical Pharmacology

Presented by:

Noha Samir Abdel Latif Gomaa

M.B.B.Ch., M.Sc.
Assistant Lecturer of Medical Pharmacology
Faculty of Medicine
Cairo University

Under Supervision of:

Prof. Dr. Elsayed Mahmoud Elrokh

Professor of Medical Pharmacology Faculty of Medicine Cairo University

Prof. Dr. Aida Abdallah Khattab

Professor of Medical Pharmacology Faculty of Medicine Cairo University

Dr. Essam Fouad Alalkamy

Assistant Professor of Medical Pharmacology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2014

التأثير المحتمل للنيكور انديل على تصلب الشرايين المحدث معملياً في الجرذان مقابل الأتورفاستاتين

توطئة للحصول على درجة الدكتوراة في الفارماكولوجيا الطبية

المقدمة من الطبيبة

نهى سمير عبد اللطيف

بكالوريوس الطب و الجراحة وماجستير الفارماكولوجيا الطبية مدرس مساعد بقسم الفارماكولوجيا الطبية كلية الطب حامعة القاهرة

تحت اشراف

الأستاذ الدكتور/السيد محمود الرخ

أستاذ الفار ماكولوجيا الطبية كلية الطب جامعة القاهرة

الأستاذة الدكتورة /عايدة عبدالله خطاب

أستاذ الفار ماكولوجيا الطبية كلية الطب جامعة القاهرة

الدكتور / عصام فؤاد العلقامي

أستاذ مساعد الفار ماكولوجيا الطبية كلية الطب جامعة القاهرة

> كلية الطب جامعة القاهرة ٢٠١٤

Acknowledgements

FIRST OF ALL, THANKS TO ALLAH

I would like to express my deep gratitude, appreciation and sincere thanks to *Professor Dr. Elsayed Mahmoud Elrokh, Professor of Medical Pharmacology, Faculty of Medicine, Cairo University*, for his support, meticulous supervision, great valuable remarks, encouragement and assistance until this work was fulfilled.

I would like to express my deep gratitude, appreciation and sincere thanks to *Professor Dr. Aida Abdallah Khattab, Professor of Medical Pharmacology, Faculty of Medicine, Cairo University,* for her support, meticulous supervision, great valuable remarks, encouragement and assistance until this work was fulfilled.

Deep thanks to *Dr. Essam Fouad Alalkamy, Assistant Professor of Medical Pharmacology, Faculty of Medicine, Cairo University*, for his kind help in every step in this work, guidance and for his valuable assistance in completing this work.

I would like to express my deep gratitude, appreciation and sincere thanks to *Professor Dr. Laila Ahmed Rashed, Professor of biochemistry, Faculty of Medicine, Cairo University*, for her great help in biochemical studies.

I am very grateful to *Dr. Reham Shehab Esmail*, *Researcher of Pathology*, *National Research Center*, for her kind assistance in analysis of the pathological findings.

Finally, I would like to express my special deep thanks and gratitude to all members of *Medical Pharmacology Department*, Faculty of Medicine, Cairo University for their great help in completing this work.

Abstract

Abstract: The comparative study of the atheroprotective effect of

nicorandil in adose of 2 mg/kg/day versus atorvastatin in a dose of 10

mg/kg/day orally was carried out on high fat/high cholesterol diet

(HF/HCD) induced atherosclerosis in rats as a model.

The degree of protection was assessed biochemically by measuring

variations in serum total cholesterol (TC), triglycerides (TG), low density

lipoprotein-cholesterol (LDL-C), very low density lipoproteins-cholesterol

(VLDL-C), atherogenic index (AI) along with superoxide dismutase

(SOD), reduced glutathione (GSH) and malondialdehyde (MDA) and

pharmacologically by estimating endothelial vascular reactivity on isolated

aotic rings in rats, arterial systolic blood pressure and ECG changes

including heart rate, P wave amplitude, PR interval, QRS duration, ST

segment and T wave and histopathologically through measuring

wall thickness and atherosclerosis scoring system.

Prophylactic and therapeutic nicorandil elicited a significant protection

against atherosclerosis in rats, prophylactic nicorandil showed protective

effect against atherosclerosis more than the therapeutic nicorandil.

In conclusion, the present study has shown that nicorandil exhibits

antihyperlipidemic, antihypertensive and cardioprotective effects. The

mechanism could be attributed to its releasing nitric oxide property,

inhibitory effect on oxidative stress as evident from its antioxidant activity

and vasodilatative effect through cGMP formation and opening of K+

channels in variety of cells.

KEY WORDS: Nicorandil - Atorvastatin - Atherosclerosis

List of Contents

	Page
List of tables	I
List of figures	II
List of Photos	\mathbf{V}
List of abbreviations	VI
Introduction and Aim of the work	1
Review of literature	3
Lipid profile in atherosclerosis	4
Pathogenesis of atherosclerosis	5
Factors affecting development and progression of atherosclerosis	7
Biological characteristics of nitric oxide	8
Role of nitric oxide in cardiovascular system	10
Potentially vasoprotective mechanisms of nitric oxide in atherosclero	sis17
Role of oxidative stress in atherosclerosis	20
Atheroprotective strategies	27
Therapeutic Interventions	29
Atorvastatin	34
Nicorandil	38

Methods of experimentally induced atherosclerosis	42
Materials and methods	44
Results	55
Discussion	140
Summary and conclusion	160
References	163
Arabic summary	

List of Tables

Page
Table (1): Optimal/near optimal, borderline and high-risk serum lipid
concentrations
Table (2): The role of NO in the cardiovascular effects of some drugs .16
Table (3): Important antioxidants and their action in atherosclerosis26
Table (4): Therapeutic efficacy and toxicities of nicorandil therapy41
Table (5): Different pharmacological parameters in control groups (Ia),
(Ib) and (Ic) and atherosclerotic groups (IIa) and (IIb)
Table (6): Different pharmacological parameters in groups (Ia and IIa)
and preventive groups (III and IV):116
Table (7): Different pharmacological parameters in groups (Ia and IIb)
and preventive groups (V and VI):117
Table (8): Different biochemical parameters in control groups (Ia, Ib and
Ic) and atherosclerotic Groups (IIa and IIb)118
Table (9): Different biochemical parameters in groups (Ia and IIa) and
preventive groups (III and IV):
Table (10): Different biochemical parameters in groups (Ia and IIb) and
preventive groups (V and VI):120
Table (11): Aortic wall thickness in control groups (Ia, Ib and Ic) and
atheroscleroticGroups (IIa and IIb)121
Table (12): Aortic wall thickness in groups (Ia and IIa) and preventive
groups (III and IV):
Table (13): Aortic wall thickness in groups (Ia and IIb) and preventive
groups (V and VI):

List of Figures

Figure (16): Concentration response to multiple doses phenylepherine
and cumulative dose response curve of acetyl choline on top of 8 μg
phenylepherine in isolated aortic ring in group (IIa)71
Figure (17): Concentration response to multiple doses phenylepherine
and cumulative dose response curve of acetyl choline on top of 8 μg
phenylepherine in isolated aortic ring in group (IIb)71
Figure (18): Arterial systolic blood pressure in group (IIa)72
Figure (19): Arterial systolic blood pressure in group (IIb)73
Figure (20): ECG in group (IIa)
Figure (21): ECG in group (IIb)
Figure (22): ECG in atherosclerotic groups (abolished T wave)76
Figure (23): ECG in atherosclerotic groups (inverted T wave)76
Figure (24): Concentration response to multiple doses phenylepherine
and cumulative dose response curve of acetyl choline on top of 8 μg
phenylepherine in isolated aortic ring in group (III)83
Figure (25): Concentration response to multiple doses phenylepherine
and cumulative dose response curve of acetyl choline on top of 8 μg
phenylepherine in isolated aortic ring in group (IV)83
Figure (26): Arterial systolic blood pressure in group (III)
Figure (27): Arterial systolic blood pressure in group (IV)85
Figure (28): ECG in group (III)
Figure (29): ECG in group (IV)90
Figure (30): Concentration response to multiple doses phenylepherine
and cumulative dose response curve of acetyl choline on top of 8 μg
phenylepherine in isolated aortic ring in group (V)
Figure (31): Concentration response to multiple doses phenylepherine
and cumulative dose response curve of acetyl choline on top of 8 μg
phenylepherine in isolated aortic ring in group (VI)100
Figure (32): Arterial systolic blood pressure in group (V)102

Figure (33): Arterial systolic blood pressure in group (VI)	102
Figure (34): ECG in group (V)	106
Figure (35): ECG in group (VI)	107
Figure (36): Mean aortic ring contraction in response	to 8 ug
phenylepherine in different groups.	129
Figure (37): Acetylcholine 20ug induced relaxation	on 8ug
phenylephrine induced contraction in different groups	129
Figure (38): Mean asterial systolic blood pressure in	different
groups	130
Figure (39): Mean heart rate in different groups	130
Figure (40): Mean Pwave intensity in different groups	131
Figure (41): Mean PR interval in different groups	131
Figure (42): Mean QRS complex in different groups	132
Figure (43): ST segment in different groups.	132
Figure (44): Mean cholesterol in different groups	133
Figure (45): Mean triglycerides in different groups	133
Figure (46): Mean HDL in different groups.	134
Figure (47): Mean LDL in different groups	134
Figure (48): Mean VLDL in different groups	135
Figure (49): Mean AI in different groups	135
Figure (50): Mean GSH in different groups	136
Figure (51): Mean SOD in different groups	136
Figure (52): Mean MDA in different groups.	137
Figure (53): Aortic wall thickness in different groups	138
Figure (54): Atherosclerosis scoring system in different groups.	139

LIST OF PHOTOS

Photo (1): normal aortic wall appearnce, (score 0). (H&E x 200)124
Photo (2): Measuring the aortic wall thickness by the image analysis
system, (score 0)
Photo (3): Atherosclerotic model, showed some smooth muscle
proliferation and fibrosis, (score 3) (H&E X 200)125
Photo (4): Measuring the aortic wall thickness in atherosclerotic model
by the image analysis system, (score 3)125
Photo (5): Atherosclerotic model, the wall thickness is increased by
fibrosis, the internal lamina became irregular, (score 3) ($H\&E\ X$
200)126
Photo (6): Measuring the aortic wall thickness in atherosclerotic model
by the image analysis system, (score 3)
Photo (7): The elastic fibers are widen by few foam cells, (score 1).
(H&E x 200)127
Photo (8): Measuring the aortic wall thickness by the image analysis
system, (score 1)127
Photo (9): Infiltration of the lamina media by large number of foamy
cells fragmenting the lamina, (score 2). (H&E x 200)128
Photo (10): Measuring the aortic wall thickness by the image analysis
system, (score 2)