Antibiotic Susceptibility Pattern among Streptococcus pneumoniae Isolates

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

By Mennat Allah Samir Mohamed

MB Bch Faculty of Medicine - Ain Shams University

Under Supervision of

Professor / Amira Mohammed Mokhtar

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Sally Mohammed Saber

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

List of Contents

	Title Page
List	t of Abbreviations
List	of TablesIII
List	of FiguresV
■ Inti	roduction
- Aim	of the Work4
■ Rev	riew of Literature
I. S	Streptococcus Pneumoniae 5
II. A	Antibiotic-Resistant Streptococcus Pneumoniae 21
III. I	Diagnosis of Pneumococcal Infection29
IV.	Treatment of Pneumococcal Infection
V. I	Prevention and Control of Pneumococcal
I	nfection 53
Mat	terials and Methods58
Res	rults
■ Dis	cussion 88
- Con	clusion and Recommendations100
• Sun	nmary102
■ Ref	erences
■ Ara	bic Summary

List of Abbreviations

ARMed	.Antibiotic Resistance Surveillance & Control in the Mediterranean Region
AST	.Antimicrobial susceptiblity test
CAP	.Community acquired pneumonia
CHD	.Coronary heart disease
CLSI	.Clinical and Laboratory Standards Institute
COPD	.Chronic Obstructive Pulmonary Disease
CPS	.Capsular Polysaccharide
CWPS	.Cell Wall Polysaccride
DD	.Disk Diffusion
DM	.Diabetes Mellitus
DNA	.Deoxyribonucleic Acid
DRSP	.Drug Resistant S. Pneumoniae
ELISA	.Enzyme-Linked Immunosorbent Assay
FDA	.Food and Drug Administration
HAP	.Hospital Acquired Pneumonia
нсв	. Hospital Central da Beira
HIV	.Human Immunodeficiency Virus
HUS	.Hemolytic Uremic Syndrome
ICT	.Immunochromatographic Membrane Test
IDSA	.Infectious Disease Society of America
IPD	.Invasive Pneumococcal Disease

LA.....Latex Agglutination

LRTLower Respiratory Tract

MALDI-TOF MSMatrix-Assisted Laser Desorption-Ionization Time-Of-Flight Mass Spectrometry

List of Abbreviations

MDRMultidrug Resistant

MHAMuller Hinton Agar

MIC.....Minimal Inhibitory Concentration

MLSbMacrolide, Lincosamide, Streptogramines

PBP.....Penicillin Binding Protein

PCRPolymerase Chain Reaction

PCVPneumococcal Polysaccharide Conjugate Vaccine

PERCHPneumonia Etiology Research for Child Health

PPSV.....Purified Pneumococcal Polysaccharide Vaccine

PRP.....Penicillin Resistant S. Pneumoniae

S. Pneumoniae Streptococcus Pneumoniae

S. viridans.....Streptococcus Viridans

SMG.....Streptococcus Mitis Group

SXTTrimethoprim-Sulphamethoxazole

UTIUrinary Tract Infection

VGSViridans Group Streptococc

List of Tables

Table No.	11tle Page
Table (1):	Taxonomic classification of S.
	pneumonia7
Table (2):	The main pneumococcal virulence
	factors and their main role in
	invasive pneumococcal disease11
Table (3):	Resistance to other antibiotics28
Table (4):	Molecular detection of genes
	responsible for penicillin and
	macrolide resistance48
Table (5):	Summary of pneumococcal vaccine
	serotype content54
Table (6):	CLSI List of used Antibiotic discs
	and their concentration66
Table (7):	Resistant Phenotype detection of S.
	pneumoniae by vitek71
Table (8):	Demographic data of clinical
	samples

Table (9):	Antibiogram of studied S. pneumoniae isolates by disk diffusion	
Table (10):	Antibiogram of studied S. pneumoniae isolates by vitek	
Table (11):	Correlation between disk diffusion and vitek results of penicillin	

List of Tables

Table No.	Title Page
Table (12):	Correlation between disk diffusion and vitek results of Erythromycin 81
Table (13):	Correlation between disk diffusion and vitek results of levofloxacin 82
Table (14):	Correlation between disk diffusion and vitek results of Tetracycline 83
Table (15):	Correlation between disk diffusion and vitek results of SXT
Table (16):	Correlation between disk diffusion and vitek results of vancomycin 85
Table (17):	Correlation between disk diffusion and vitek results of linezolid
Table (18):	Number of isolates of S.pneumonaie at various MIC ranges to Benzylpenicillin
Table (19):	Number of isolates of S.pneumonaie at various MIC ranges to Erythromycin
Table (20):	MIC50, MIC90 for Benzylpenicillin, and Erythromycin87
Table (21):	Detected resistant S.pneumoniae phenotypes

List of Figures

Figure No.	Title	Page
Fig. (1):	Invasive and Non-invasive pneumococcal disease	17
Fig. (2):	Pneumococcal serogroups with most responsible for Invasive	
Fig. (3):	S. pneumoniae lancet-shape diplococci in Gram stain; no encapsulated organisms as e by the clear "halo"	te the evident
Fig. (4):	Principle of MALDI-TOF MS.	36
Fig. (5):	A) Negative quellung reaction positive quellung reaction, the capsule appears as an enlarge halo surrounding the dark be stained cell	ne ged clear lue
Fig. (6):	Flow chart for identification characterization of a S. pneu	
Fig. (7):	Flow chart for standard diag Pneumonia in immuno-comp adults	petent
Fig. (8):	Vitek® 2 compact system	61
Fig. (9):	Vitek® 2 antibiotic susceptible cards AST-ST01	•
Fig. (10):	Colonies of S.pneumoniae or agar mucoid with draughtsm appearance	nan

Fig. (11):	Gram stain of S. pneumoniae63

List of Figures

Figure No.	Title	Page
Fig. (12):	Optochin test. A) S.viridia resistance to optochin B) S Pneumoniae, susceptible	S.
Fig. (13):	Antibiotic susceptibility te	·
Fig. (14):	Inducible clindamycin res pneumoniae	
Fig. (15):	Vitek® 2: AST of S. pneum	noniae 70
Fig. (16):	Frequency of studied clini samples	
Fig. (17):	Percentage of antibiotic sed disk diffusion method	0 0
Fig. (18):	Percentage of antibiotic se	

Abstract

Streptococcus pneumoniae is the leading cau1se of community-acquired pneumonia around the world and in Severe pneumococcal disease is associated with a high mortality in adults. Antimicrobial resistance of S. pneumoniae against the most commonly antimicrobial drugs is increasing worldwide, principally β-lactam, macrolide sulfonamide affecting and sensitivity. β-lactam antibiotics. and penicillin most particular, amongst the widely used antimicrobial drugs for empirical treatment pneumonia 1. Evaluation of antimicrobial resistance of S. pneumoniae is fundamental to guide the empirical treatment of PID, as well as to encourage reflections to support immunization policies2.

This study was done on 50 strptococcus pneumoniae isolates recovered from samples referred to the Central Microbiology Laboratory, Ain Shams University Hospitals, for routine culture and sensitivity. the mean value of their ages was 45.8+-16.3. they were 37 males and 13 females. antibiotic susceptibility test was done by disk diffusion method and viktek method.there was a significant association between the disk diffusion method and vitek method (p=0.022) except for penicillin.

In this study the resistance rate of MDR isolates by vitek method was (16/50) 32% .the percentage of PRP was (19/50) 38%. The percentage of MLSb is (8/50) 16%. the percentage of vancomycin resistant S.pneumonia was (6/50) 12%.

Keyword: Antibiotic, Streptococcus pneumonia, Clinical Pathology

INTRODUCTION

Streptococcus pneumoniae (S.pneumoniae) is a leading cause of invasive and noninvasive bacterial pneumonia, meningitis, and sepsis in infants, children, and adult worldwide. However, many countries lack national estimates of disease burden. To support local and global policy decisions on pneumococcal disease prevention and treatment, country-specific incidence of serious cases and deaths was estimated in children younger than 5 years. S. pneumoniae causes around 11% of all deaths in children younger than 5 years. Child mortality reduction can be accelerated by prevention and treatment of pneumococcal disease, especially in regions of the world with the greatest burden (Kumar, 2015).

Although there are varieties of antibiotics for treatment of (S. pneumoniae), but the pneumococcal multidrug resistance (MDR) has become a serious concern in the treatment of invasive pneumococcal diseases globally (Song and Wayne, 2013). The percentage of multidrug-resistant strains have reached up to 95.6% (Kim et al., 2012; Song and Wayne, 2013).

Globally the percentage of *S. pneumoniae* resistant strains is 100% for erythromycin and cotrimoxazole, 86.9% for clindamycin, 82% for cefuroxime, 42,6% for penicillin, 36.1% for meropenem, 18% for ceftriaxone, and 13% for cefotaxime (*Liu et al. (2013*).

A retrospective multicenter study conducted in 5 hospitals in Egypt revealed an increase in penicillin resistance (37%), and little resistance to ceftriaxone (84% susceptible) and ciprofloxacin (82% susceptible) among CSF isolates (*El Kholy et al.*, 2003).

Another sentinel meningitis surveillance program showed a marked increase in penicillin resistance (50%) among CSF isolates in Egypt (Wasfy et al., 2005).

Also, *Afifi et al. (2007)*, reported high rates of multidrug resistance (MDR) in *S. pneumoniae*, reached 8 out of the 206 isolates tested (4%).

Additionally, a surveillance report of the Antibiotic Resistance Surveillance & Control in the Mediterranean Region (ARMed) project which started in 2003 and continued for 2 years in the southeastern Mediterranean, reported 30% penicillin resistance and 25% erythromycin resistance among the *S. pneumoniae* Egyptian isolates (*Borg et al., 2009*).

Generally, serotype 19A seemed to have a higher resistance rate than other serotypes. Serotype 19A is not a serotype that is covered by the pneumococcal conjugate vaccine (PCV-7), which should be of concern. Studies in many countries have shown that use of PCV-13 decreased the overall incidence of invasive pneumococcal disease (IPD) among children (Weil-Olivier et al., 2012).

Extensive studies are required to continually update antimicrobial susceptibility patterns. The unregulated use of antibiotics in developing countries is common, stressing the importance of surveillance for antibiotic resistant pathogen to guide empirical treatment (*Borg et al.*, 2009).

For *S. pneumoniae* isolated from CSF, penicillin, cefotaxime, ceftriaxone and meropenem should be tested by a reliable Minimal inhibitory concentration (MIC) method. Such isolates can also be tested against vancomycin using the MIC or disk diffusion. For non-meningitis isolates oxacillin zone or penicillin (MIC) can predict susceptibility to β -lactams. Inducible clindamycin resistance can be detected by disk diffusion using the D-zone test or by broth microdilution using the single-well test (containing both erythromycin and clindamycin) (*Clinical and Laboratory standards Institute "CLSI"*, 2017).

AIM OF THE WORK

The aim of this work is to detect the antibiotic susceptibility pattern among *S. pneumoniae* isolates which recovered from clinical samples referred to the Central Microbiology Laboratory, Ain Shams University Hospitals.