Impact of the type of Human Leucocyte Antigen – A Allele on the Outcome of Hepatitis C Virus Infection in the Egyptian Population

Thesis

Submitted for Partial Fulfillment of MD in Clinical and Chemical Pathology

By

Nancy Samir Wahba Basta MB BCh, MSc. Clinical & Chemical Pathology

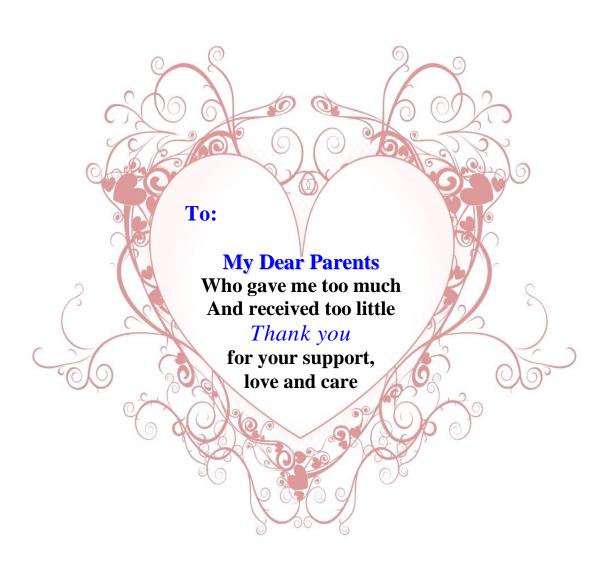
Supervised By

Prof./ Aisha Yassin Abdel-Ghaffar

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Prof./ Nahla Mohamed Zakaria Yousef

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University


Doctor/ Amal Ahmed Abbas

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Dina El-Sayed El-Shennawy

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University

Acknowledgement

First and foremost, Thanks are given to God, the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of Professor/ Aisha Yassin Abdel-Ghaffar, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University. I will never forget her unlimited help, kind encouragement and wise guidance. To her, words of praise are not sufficient and I am really greatly indebted to her.

I would like also to express my sincere gratitude and appreciation to Professor/ Nahla Mohamed Zakaria Yousef, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her enthusiastic guidance, unique effort, valuable advice and generous help throughout this work.

I pay my profound thanks to Assistant Professor/ Amal Ahmed Abbas, Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her enlightening supervision and guidance with valuable comments.

Special thanks to Assistant Professor / Dina El-Sayed El-Shennawy, Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her useful assistance and helpful supervision throughout this work.

Last but not least my sincere thanks and appreciation to **Dr. Dina Ali & Dr. Waleed Abdelhady** for their cooperation and profound help in this study.

This thesis was supported by the STDF grant number 457.

List of Contents

Title	Page No
•	

List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Chpater (1): Hepatitis C Virus	4
I- Structure:	4
II- Genome:	4
III- HCV genotypes:	14
IV- Life cycle	16
V- Immune response	22
VI- Immunosuppression and immunoevasion in HCV	
infection	
VII- HCV epidemiology:	42
VIII- HCV transmission:	42
IX - Course of HCV infection	47
X- Treatment for HCV infection	54
XI- The Need for prophylactic and therapeutic HCV	
vaccines	
Chapter (2): Human Leukocyte Antigens (HLA)	
I- Introduction:	
II- HLA class I	
III- HLA class II	
IV- Inheritance of HLA	
V- HLA polymorphism	
VI- HLA system nomenclature	

List of Contents (Cont...)

Title	Page No.
VII- Association of HLA alleles with diseases	83
VIII- HLA typing:	87
Chapter (3): HLA Alleles in HCV Infection	113
Subjects and Methods	118
Results	150
Discussion	168
Summary and Conclusion	182
Recommendations	185
References	186
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Extrahepatic manifestations of	
	hepatitis C infection	
Table (2):	Broad antigens and splits	
Table (3):	Molecular HLA typing techniques	93
Table (4) :	Comparison of HLA typing methods	s: DNA-
	based and serologic	
Table (5):	Results of AST, ALT and HCV-RN	IA PCR
	determination in HCV chronic patient	ts151
Table (6):	Statistical comparison between	n the
	frequencies of HLA-A alleles in	healthy
	control group (130 individuals) with t	otal 260
	HLA-A alleles (2 alleles/individual)	and in
	HCV patients (82 patients) with to	tal 164
	HLA-A alleles (2 alleles/patient)	153
Table (7):	Statistical comparison between	n the
	frequencies of HLA-A alleles in	healthy
	control group (130 individuals) with t	otal 260
	HLA-A alleles (2 alleles/individual)	
	+ve P.I. HCWs group (22 individual	
	total 44 HLA-A alleles (2 alleles/indiv	
Table (8):	Statistical comparison between	
	frequencies of HLA-A alleles in +ve P.1	
	group (22 individuals) with total 44	
	alleles (2 alleles/individual) and in	
	HCWs group (18 individuals) with	
	HLA-A alleles (2 alleles/individual)	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (9):	Statistical comparison between	the
	frequencies of HLA-A alleles in +	-ve P.I
	HCWs (22 individuals) with total 44	HLA-A
	alleles (2 alleles/individual) and in	
	HCV patients (82 patients) with tot	
	HLA-A alleles (2 alleles/individual)	162
Table (10):	Statistical comparison of the frequer	ncies of
	HLA-A alleles in HCV chronic patien	ts with
	low level of viraemia (L) (31 patient	
	total 62 HLA-A alleles (2 alleles/patie	nt) and
	those with moderate or high level of vi	
	(MH) (51 patients) with total 102	HLA-A
	alleles (2 alleles/patient)	164
Table (11):	Statistical comparison between	the
	frequencies of HLA-A alleles in HCV i	nfected
	patients with normal ALT (43 patient	s) with
	a total of 86 HLA-A alleles (2 alleles/p	patient)
	and those with elevated ALT (39 pa	atients)
	with a total of 78 HLA-A alle	
	alleles/patient)	166

List of Figures

Fig. No.	Title F	age No.
T: (4):		
Fig. (1):	Structure of Hepatitis C Virus	
Fig. (2):	Organization of the hepatitis C v	
E: (a).	genome	
Fig. (3):	Geographic distribution of HCV genotyp	
Fig. (4):	HCV life cycle	
Fig. (5):	Innate and Adaptive immune response	
T! (a):	HCV infection	
Fig. (6):	Immune suppressive mechanisms in H	
	infection	
Fig. (7):	Course of acute, resolving hepatitis C	
Fig. (8):	Course of acute hepatitis C that evo	
_,	into chronic infection	
Fig. (9):	Natural history of HCV infection	
Fig. (10):	Map of the human MHC	
Fig. (11):	Structure of class I MHC molecule	
Fig. (12):	Antigen presentation by MHC class I	
Fig. (13):	Structure of class II MHC molecule	
Fig. (14):	Antigen presentation by MHC class II	
Fig. (15):	Segregation of haplotypes in family	
Fig. (16):	Increasing number of HLA alleles f	
	1987 to July 2012	
Fig. (17):	HLA nomenclature	
Fig. (18):	Complement media	
	microlymphocytotoxicity technique	
Fig. (19):	Reverse SSOP technique	95
Fig. (20):	HLA Genotyping using SSOP	in
	combination with Luminex Technology	97
Fig. (21):	Typing for HLA class II by seque	nce-
	specific priming (SSP) technique	99
Fig. (22):	DNA sequencing	102
Fig. (23):	Heteroduplex technique	106
Fig. (24):	Dilution of CFSE with cell division	122

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Fig. (25):	Flowcytometry histogram showing specific peptides stimulated proliferation assay by CFSE for a HCV	cell	199
Fig. (26):	Principle of INNO-LiPA line probe for HLA-A typing	assay	
Fig. (27):	Location of the marker line (Prussian line on Strip 1 and turquoise line on 2), the conjugate control line (conj. con the HLA-A Update control line (H control), and the 44 probe lines on	Strip ntrol),	194
	INNO-LiPA HLA-A Update Strips		145
Fig. (28):	A photo of HLA-A typing strips showing		
Fig. (29):	A. HLA-A*32 allele frequency % in reto other alleles in chronic HCV patient healthy control group; B . HLA-A*92	lation s and allele	147
Fig. (30):	frequency % in relation to other alleled HCV patients and healthy control group. A. HLA-A*32 allele frequency % in relation to other alleles in +ve P.I. HCWs healthy control group; B. HLA-A*33 frequency % in relation to other alleles.	ip lation and allele	155
Fig. (31):	+ve P.I. HCWs and healthy control group Percent bar figure for comparison of A*01, -A*11, -A*26, -A*31 and -A*69 a frequency % in HCV chronic patients low viraemia and moderate to	oup HLA- alleles with	159
Fig. (32):	viraemia	HLA- HCV el and	
	uiuse wiiii eievaieu ALI level		107

List of Abbreviations

Abb. Full term

7 0	7 11 1
7meG	7-methylguanosine
aa	Amino acid
AIDS	Acquired immunodeficiency syndrome
ALT	Alanine transaminase
APCs	Antigen presenting cells
ARF	Alternate reading frame
ATPase	Adenosine Triphosphatase
BLyS	B-lymphocyte stimulator
bp	Base pairs
CD	Cluster of differentiation
CDC	Complement dependant microlymphocytotoxicity
cDNA	Complementary DNA
CLDN	Claudin
CREG	Cross Reacting Group
CTLs	Cytotoxic T-lymphocytes
DAA	Direct antiviral agents
dATP	Deoxyadenosine triphosphate
DC	Dendritic cell
dCTP	Deoxycytidine triphosphate
ddATP	Dideoxyadenosine triphosphate
ddCTP	Deoxycytidine triphosphate
ddGTP	Dideoxyguanosine triphosphate
ddTTP	Dideoxythymidine triphosphate
DGGE	Denaturing gradient gel electrophoresis
dGTP	Deoxyguanosine triphosphate
DNA	Deoxyribonucleic acid
dsRNA	Double stranded RNA
dTTP	Deoxythymidine triphosphate
E	Envelope
EHMs	Extrahepatic manifestations
eIF2	Eukaryotic Initiation Factor 2

ER	Endoplasmic reticulum
ERAP	ER-resident aminopeptidase
\overline{F}	Frameshift
Foxp3	Forkhead box P3
GAGs	Glycosaminoglycans
\overline{GN}	Glomerulonephritis
GWAS	Genome-wide association studies
H ⁺	Hydrogen ion
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HCV-LPs	HCV-like particles
HDL	High density lipoprotein
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigens
HPV	Human papilloma virus
hsp	Heat shock protein
HVR	Hypervariable regions
IDDM	Insulin dependant diabetes mellitus
IDU	Injection drug use
IFN	Interferon
Igs	Immunoglobulins
IL	Interleukin
IL-2Rα	IL-2 receptor α
<i>IP-10</i>	INF-γ-inducible protein 10
IRES	Internal ribosome entry side
IRF3	IFN regulatory factor 3
ISDR	IFN-α sensitivity-determining region
ITIM	Immunoreceptor tyrosine-based inhibitory motif
IU/L	International unit/Litre
IU/ml	International unit/millilitre
JAK	Janus kinase
kb	kilobase
kDa	kilodalton
KIR	Killer immunoglobulin-like receptor
LD	Linkage disequilibrium
LDL	Low density lipoprotein
LDL-R	LDL-receptor

LKM	Liver-kidney microsomal
LTA	Lymphotoxin alpha
LTB	Lymphotoxin beta
Mbp	Mega basepair
MHC	Major histocompatibility complex
MICA	Major histocompatibility complex class I-related
	chain A
miRNA	MicroRNA
MLC	Mixed lymphocyte culture
mRNA	Messenger RNA
MS	Multiple sclerosis
NF-κB	Nuclear factor kappa B
NHL	Non-Hodgkin's lymphoma
NK	Natural killer
NKT	Natural killer T cell
NS	Non Structural
NTPase	Nucleoside triphosphatase
OCLN	Occludin
ORF	Open reading frame
PBMCs	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PD-1	Programmed cell death protein 1
PD-L1	PD-1 ligand
PKR	Protein kinase RNA-activated
RA	Rheumatoid arthritis
RC	Replication complex
RdRp	RNA-dependent RNA polymerase
RF	Rheumatoid factor
RFLP	Restriction fragment length polymorphism
RIG-I	Retinoic acid–inducible gene I
RNA	Ribonucleic acid
ROS	Reactive oxygen species
SL	Stem-loop
SLE	Systemic lupus erythematosus
SNPs	Single nucleotide polymorphisms
SR-BI	Scavenger receptor class B type I
SSCP	Single strand conformation polymorphism
SSOP	Sequence specific oligonucleotide probe/probing

SSP	Sequence specific primer/priming
STAT	Signal transducer and activator of transcription
SVR	Sustained virologic response
TAP	Transporter protein
Taq	Thermus aquaticus
TCRs	T-cell receptor
TGF	Transforming growth factor
TGGE	Temperature gradient gel electrophoresis
Th	T helper
TLR3	Toll like receptor 3
TNF-α	Tumor necrosis factor alpha
Tregs	Regulatory T cells
U/UC	Polyuridine polypyrimidine
UTR	Untranslated region
VLDL	Very low density lipoprotein
WHO	World Health Organization
α	Alpha
β	Beta
λ	Delta

INTRODUCTION

Hereatitis C virus (HCV) was identified and cloned in 1989. It is estimated that more than 170 million persons are infected with HCV world-wide (3% of population) and as many as 3 million individuals are newly infected each year. In 20–30% of infections the virus is cleared spontaneously; however, in the majority of patients the virus persists. The mechanism by which some individuals spontaneously resolve infection, while others become chronically infected is not clearly understood (Edwards et al., 2012). Both virus-related factors such as viral heterogeneity and replicative activity and the host determinants such as lack of efficient immune responses are involved in the pathogenesis of chronic hepatitis (Tripathy et al., 2009).

The most striking features of HCV are its propensity to persist in a large proportion of infected individuals and the broad spectrum of liver disease that result from infection. Currently, there is no available vaccine to prevent HCV infection (**Obeid, 2011**). Studies in humans and animal models of HCV infection have demonstrated that HCV elicits innate immune responses early after infection. However, the virus can persist in the face of the innate immune response. Indeed, viral clearance occurs only in the presence of antiviral CD4⁺ and CD8⁺ T cell responses (**Dustin and Rice, 2007**).

A successful T cell response requires the presentation of viral peptides bound to HLA molecules on the surface of

______ 1 _____