NUMERICAL INVESTIGATION FOR THE FACTORS AFFECTING FILM COOLING EFFECTIVENESSON A GAS TURBINE BLADE

By

Yasser Samir Bayoumi Abd El Latif

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirement for the Degree of

MASTER OF SCIENCE in MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

NUMERICAL INVESTIGATION FOR THE FACTORS AFFECTING FILM COOLING EFFECTIVENESS ON A GAS TURBINE BLADE

By

Yasser Samir Bayoumi Abd El Latif

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirement for the Degree of

MASTER OF SCIENCE in MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Gamal Abd El-moniem El Hariry

Mechanical Power Engineering Department Faculty of Engineering Cairo University Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Taher Mohamed Abou-Deif

Mechanical Power Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

NUMERICAL INVESTIGATION FOR THE FACTORS AFFECTING FILM COOLING EFFECTIVENESS ON A GAS TURBINE BLADE

By

Yasser Samir Bayoumi Abd El latif

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil
Professor of Mechanical Power Engineering, Cairo University

Thesis Advisor
and Member

Prof. Dr. Sayed Ahmed Kaseb

Head of Mechanical Power Engineering Department, Cairo Member University

Prof. Dr. Mohammed Fayeq Abd-Rabbo

Professor of Mechanical Power Engineering, Shubra-Benha
University

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ACKNOWLEDGMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for His generousness and support through all my life.

I would like to thank Prof. Essam E Khalil, Dr. Gamal El Hariry and Dr. Taher Abo Deif for their guidance and encouragement. I am grateful to them, and to all my respectful teachers and professors, for mentoring me throughout my undergraduate and graduate study.

I extend my gratitude to my dear colleagues for their valuable suggestions and noteworthy discussions. Thanks are also to my students (younger brothers) who respectfully, cared for me as a teaching assistant and an older brother.

Finally, I owe a lifelong debt to my parents, my brothers for their motivation through finishing this thesis and their patience and care and for maintaining a perfect environment for study and research.

TABLE OF CONTENTS

ACKNOWLEDGMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	⁄ i
LIST OF FIGURESv	ii
NOMENCLATUREx	iv
Greek Lettersx	vi
Superscripts and Subscriptsx	vii
Abbreviationsx	viii
ABSTRACT	кiх
1. INTRODUCTION	1
1.1.Concept	1
1.2.Gas turbine efficiency	2
1.3.Types of cooling	3
1.3.1.Convection cooling	.3
1.3.2.Impingement cooling	4
1.3.3. Transpiration cooling	.4
1.3.4. Water/steam cooling	4
1.3.5.Film cooling	.4
1.4.Film cooling	.5
1.4.1. Slot film cooling	
1.4.2. Heat transfer coefficient and film cooling effectiveness	.6
1.4.3. Injection angles	
1.4.4. Shaped holes	
	10

2.	LITERATURE REVIEW	12
	2.1.Baseline holes film cooling.	12
	2.2.Cratered holes	13
	2.3.Trenched holes	14
	2.4.Surface curvature effects.	16
	2.5.Surface deposition and near hole obstruction	17
	2.6.Coolant pulsation effects.	18
3.	GOVERNING EQUATIONS	20
	3.1.Introduction.	20
	3.2.Mass conservation equation in three dimensions	20
	3.3. Momentum conservation equation in three dimensions	21
	3.4.Energy conservation equation in three dimensions	22
	3.5.Turbulence modeling	22
	3.6.The K-E models	22
	3.6.1. The standard K- E model	23
	3.7.Wall functions	23
	3.7.1.Standard Wall Functions.	25
	3.8.Discretization scheme	26
4.	NUMERICAL INVESTIGATION PRINCIPLES	27
	4.1.Hole Configurations	27
	4.2.Control volume	29
	4.3.Model independence Check	29
	4.4.Mesh generation	31
	4.5.Grid independence Check	31
	4.6. Validation of Numerical Model	32
	4.7.Numerical models	34
	4.7.1. Thermal Barrier Coatings models	34
	4.7.2. Surface curvature models	36
	4.7.3. Near hole obstructions models	38

4.8.Parametric Study	40
4.8.1. Effect of TBC	40
4.8.2. Effect of surface curvature.	41
4.8.3. Effect of deposition and near-hole obstructions	42
4.8.4. Effect of pulsating coolant flow	43
4.9.Boundary Conditions	43
4.9.1. Hot Mainstream Inlet	43
4.9.2. Coolant Inlet.	43
4.9.3. Mid-pitch plane.	43
4.9.4. Flat Plate or curved surfaces	44
4.9.5. Coolant Pipe Walls	44
4.9.6. Upper Surface	44
4.10. Convergence Criterion.	44
5. RESULTS AND DISCUSSION	45
5.1. Effect of TBC on film cooling effectiveness	45
5.1.1. Axial hole results	45
5.1.2. Shaped hole results	48
5.1.3. Maximum effectiveness comparison.	51
5.1.4. Pitch to diameter ratio effect.	52
5.1.4.1.Axial trenched holes.	52
5.1.4.2.Shaped trenched holes	53
5.1.5. Trench depth effect	54
5.1.5.1.Axial trenched holes.	54
5.1.5.2.Shaped trenched holes	55
5.1.6. Lift off phenomena.	57
5.1.7. Anti-Kidney vortices for baseline and trenched holes	60
5.2.Effect of surface curvature.	63
5.2.1. Baseline Axial hole results	63
5.2.2. Baseline shaped hole results	68
5.2.3. Axial trenched hole results	73
5.2.4. Area Averaged film cooling effectiveness	78

5.3. Combined effect of surface roughness, depositions and Near-hole obstruction	ns80
5.3.1. Axial hole results	81
5.3.2. Shaped hole results.	84
5.3.3. Axial trenched hole	87
5.3.4. Effect of deposition height	90
5.3.5. Effect of deposition size.	94
5.3.6. Effect of deposition distance from the hole	98
5.4.Effect of Pulsating coolant.	100
5.4.1. Pulsation frequency effect	100
5.4.2. Pulsation duty cycle effect.	103
5.4.3. Pulsation Amplitude effect	105
6. SUMMERY AND CONCLUSIONS	108
7. FUTURE WORK AND RECOMMENDATIONS	110
8. REFERENCES	112

LIST OF TABLES

Table 1.1: Factor affecting film cooling effectiveness [4]	7
Table 4.1: boundary conditions used in Jung & Lee experiment (2000)	32

LIST OF FIGURES

Figure 1.1: Gas turbine main components [11]
Figure 1.2: Trend in increasing firing temperature [1].
Figure 1.3: Gas turbine performance map [1]
Figure 1.4: Different blade cooling schemes [1]
Figure 1.5: Typical Cooled blade [9]
Figure 1.6: Convection and film cooling [8]
Figure 1.7: Schematic of slot-like film cooling regions in turbine [6]6
Figure 1.8: Ideal slot film cooling [6]6
Figure 1.9: Injection angles [10]
Figure 1.10: Modern HPT film cooled blade and vane [2]
Figure 1.11: Four types of shaped holes [11]9
Figure 1.12: Turbine inlet operating temperature over the years [12]
Figure 2.1: Cratered axial hole showing the bonding coating layer and the thermal barrier coating layer Fric & Campell (2002)
Figure 2.2: Axial holes inside trench (left) with results (right) from Bunker (2002)15
Figure 2.3: Test surface and trench cases for Waye and Bogard (2007)
Figure 2.4: Cases studied (left) by Harrison and Bogard (2007) and summarized results (right)16
Figure 2.5: Micrograph showing deposits of foreign materials in a film cooling hole from Bunker (2000)
Figure 2.6: Illustration of surface distortions by Sundaram & Thole (2006)
Figure 2.7: Example of sandpaper placement with outlines of 1/2d x 1/2d x 1/2d Upstream+Downstream obstruction locations used by Somawardhana & Bogard (2007)18
Figure 3.1: Typical point velocity measurement in turbulent flow
Figure 4.1: Axial hole geometry

Figure 4.2: Shaped hole geometry	27
Figure 4.3: Axial and shaped hole configurations.	28
Figure 4.4: Control volume used.	29
Figure 4.5: Effect of model height on lateral averaged effectiveness.	30
Figure 4.6: Effect of model length on lateral averaged effectiveness	30
Figure 4.7: Mesh generated.	31
Figure 4.8: Grid Independency Check for the applied model.	32
Figure 4.9: Numerical results in comparison to corresponding experimental results	33
Figure 4.10: Cratered hole geometries.	34
Figure 4.11: Trenched hole geometries.	35
Figure 4.12: Side view for trenched hole geometries.	35
Figure 4.13: shaped hole at concave surface with two strength of curvature	36
Figure 4.14: shaped hole at convex surface with two strength of curvature	37
Figure 4.15: Axial trenched hole at concave surface with two strength of curvature	37
Figure 4.16: Axial trenched hole at convex surface with two strength of curvature	38
Figure 4.17: Example for near hole obstructions for axial hole geometry	39
Figure 4.18: Example for near hole obstructions for shaped hole geometry	39
Figure 4.19: Example for near hole obstructions for axial trenched hole geometry	40
Figure 4.20: Flow chart for the parameters studied for TBC	41
Figure 4.21: Flow chart for the parameters studied for surface curvature	41
Figure 4.22: Flow chart for the parameters studied for near hole obstructions	42

Figure 4.23: Flow chart for the parameters studied for pulsating coolant flow	.43
Figure 5.1: Effect of TBC on axial hole geometry.	45
Figure 5.2: Effectiveness contours showing the effect of blowing ratio on axial hole geometry at Br=1	
Figure 5.3: Effectiveness contours showing the effect of blowing ratio on axial hole geometry at Br=2	
Figure 5.4: Effect of TBC on shaped hole geometry	.48
Figure 5.5: Effectiveness contours showing the effect of blowing ratio on shaped hole geometry Br=1	
Figure 5.6: Effectiveness contours showing the effect of blowing ratio on shaped hole geometry Br=2	
Figure 5.7: comparison between baseline shaped hole and trenched holes	.51
Figure 5.8: Effect of pitch to diameter ratio on lateral effectiveness at Br=1	.52
Figure 5.9: Effect of pitch to diameter ratio on lateral effectiveness at Br=2	52
Figure 5.10: Effect of pitch to diameter ratio on lateral effectiveness at Br=1	.53
Figure 5.11: Effect of pitch to diameter ratio on lateral effectiveness at Br=2	.53
Figure 5.12: Effect of trench depth ratio on lateral effectiveness at Br=1	54
Figure 5.13: Effect of trench depth ratio on lateral effectiveness at Br=2	.55
Figure 5.14: Effect of trench depth ratio on lateral effectiveness at Br=1	.55
Figure 5.15: Effect of trench depth ratio on lateral effectiveness at Br=2	56
Figure 5.16: Effectiveness contours at mid-hole plane for baseline axial hole	.57
Figure 5.17: Effectiveness contours at mid-hole plane for craterd axial hole	.58
Figure 5.18: Effectiveness contours at mid-hole plane for trenched axial hole	.58
Figure 5.19: Effectiveness contours at mid-hole plane for baseline shaped hole	.59
Figure 5.20: Effectiveness contours at mid-hole plane for craterd shaped hole	.59
Figure 5.21: Effectiveness contours at mid-hole plane for trenched shaped hole	.60

Figure 5.22: Effectiveness contours with flow direction vectors for Axial hole at X/D=261
Figure 5.23: Effectiveness contours with flow direction vectors for shaped hole at X/D=362
Figure 5.24: Effect of surface curvature on axial hole geometry at Br=163
Figure 5.25: Effect of surface curvature on axial hole geometry at Br=264
Figure 5.26: Effect of surface curvature on axial hole geometry at Br=364
Figure 5.27: Effectiveness contours showing the effect of surface curvature on axial hole geometry at Br=1
Figure 5.28: Effectiveness contours showing the effect of surface curvature on axial hole geometry at Br=2
Figure 5.29: Effectiveness contours showing the effect of surface curvature on axial hole geometry at Br=3
Figure 5.30: effect of surface curvature on shaped hole geometry at Br=1
Figure 5.31: effect of surface curvature on shaped hole geometry at Br=2
Figure 5.32: Effect of surface curvature on shaped hole geometry at Br=369
Figure 5.33: Effectiveness contours showing the effect of surface curvature on shaped hole geometry at Br=1
Figure 5.34: Effectiveness contours showing the effect of surface curvature on shaped hole geometry at Br=2.
Figure 5.35: Effectiveness contours showing the effect of surface curvature on shaped hole geometry at Br=3.
Figure 5.36: Effect of surface curvature on trenched hole geometry at Br=1
Figure 5.37: Effect of surface curvature on trenched hole geometry at Br=2
Figure 5.38: Effect of surface curvature on trenched hole geometry at Br=3
Figure 5.39: Effectiveness contours showing the effect of surface curvature on shaped hole geometry at Br=1
Figure 5.40: Effectiveness contours showing the effect of surface curvature on shaped hole geometry at Br=2

Figure 5.41: Effectiveness contours showing the effect of surface curvature on shaped hole geometry at Br=3.	7
Figure 5.42: Area averaged effectiveness for baseline axial hole.	78
Figure 5.43: Area averaged effectiveness for baseline shaped hole.	78
Figure 5.44: Area averaged effectiveness for axial trenched hole.	79
Figure 5.45: Coanda effect acting on a spoon in a water stream.	80
Figure 5.46: Effect of downstream deposition on lateral effectiveness	81
Figure 5.47: Effect of upstream deposition on lateral effectiveness	81
Figure 5.48: Effectiveness contours at mid hole plane showing lift off phenomena.	82
Figure 5.49: Velocity vectors at mid hole plane showing Coanda effect.	82
Figure 5.50: Effectiveness contours for downstream and upstream deposition for axial hole	83
Figure 5.51: Effect of downstream deposition on lateral effectiveness of shaped hole	84
Figure 5.52: Effect of upstream deposition on lateral effectiveness of shaped hole	84
Figure 5.53: Effectiveness contours at mid hole plane showing lift off phenomena	85
Figure 5.54: Velocity vectors at mid hole plane showing Coanda effect.	85
Figure 5.55: Effectiveness contours for downstream and upstream deposition for shaped hole	e86
Figure 5.56: Effect of downstream deposition on lateral effectiveness.	87
Figure 5.57: Effect of upstream deposition on lateral effectiveness.	87
Figure 5.58: Effectiveness contours at mid hole plane showing lift off phenomena	88
Figure 5.59: Velocity vectors at mid hole plane showing Coanda effect.	88
Figure 5.60: Effectiveness contours for downstream and upstream deposition for shaped hole	e89
Figure 5.61: Effect of downstream deposition height on lateral effectiveness.	90
Figure 5.62: Effect of upstream deposition height on lateral effectiveness.	90
Figure 5.63: Effectiveness contours at mid hole plane showing lift off phenomena	91
Figure 5.64: Velocity vectors at mid hole plane showing Coanda effect.	92

Figure 5.65: effectiveness contours for downstream deposition for axial hole	93
Figure 5.66: effectiveness contours for upstream deposition for axial hole.	93
Figure 5.67: Effect of downstream deposition size on lateral effectiveness.	94
Figure 5.68: Effect of upstream deposition size on lateral effectiveness.	94
Figure 5.69: Effectiveness contours at mid hole plane showing lift off phenomena	95
Figure 5.70: Velocity vectors at mid hole plane showing Coanda effect.	96
Figure 5.71: effectiveness contours for downstream deposition for axial hole.	97
Figure 5.72: effectiveness contours for upstream deposition for axial hole.	.97
Figure 5.73: Effect of downstream deposition distance from axial hole at Br=1.	.98
Figure 5.74: Effect of downstream deposition distance from axial hole at Br=2.	.98
Figure 5.75: Effect of upstream deposition distance from axial hole at Br=1.	.99
Figure 5.76: Effect of upstream deposition distance from axial hole at Br=2.	99
Figure 5.77: Effect of pulsation frequency at different blowing ratios for axial hole	100
Figure 5.78: Effect of pulsation frequency at different blowing ratios for shaped hole	100
Figure 5.79: Effect of pulsation frequency at different blowing ratios for axial trenched hole	.101
Figure 5.80: Effect of pulsation frequency at different hole geometries at nominal Br=0.5	102
Figure 5.81: Effect of pulsation frequency at different hole geometries at nominal Br=1	102
Figure 5.82: Effect of pulsation frequency at different hole geometries at nominal Br=2	102
Figure 5.83: Effect of pulsation duty cycle at Br=1 and F=10 Hz for axial hole	103
Figure 5.84: Effect of pulsation duty cycle at Br=1 and F=20 Hz for axial hole.	103
Figure 5.85: Effect of pulsation duty cycle at Br=1 and F=10 Hz for shaped hole	104
Figure 5.86: Effect of pulsation duty cycle at Br=1 and F=20 Hz for shaped hole	104
Figure 5.87: Effect of pulsation duty cycle at Br=1 and F=10 Hz for axial trenched hole	.105