<u>ratio in both serum and tissue in</u> Hepatocellular carcinoma

Thesis
submitted for
partial fulfillment of M.Sc. degree
in Internal Medicine
By
Ahmed el Saady Khayyal
M.B.B.Ch
Supervisors:

Prof. Dr Osama Abo El Fotoh El Sayed Prof. of Internal Medicine Ain-Shams University

Dr.Magdy Galal Abd El Rahman

Ass. Prof. of Internal Medicine Ain-Shams University

Dr. Hosam Abd El Aziz Mahmoud

Lecturer of Internal Medicine Ain-Shams University

Ain-Shams University 2005

Acknowledgement

First and foremost thanks to GOD, the most merciful. I would like to dedicate this work to the memory of my father Prof. Dr. EL Saady khayyal who was my guide, my tutor, my support and to whom I owe all my success and achievements.

I wish to express my deep appreciation and sincere gratitude to Prof. Dr. Osama Abo EL Fotoh, continuous help, patience and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor for me to work under his supervision.

I wish to express my supreme gratitude to Dr. Magdy Galal for his kind assistance, supervision, continuous encouragement and for being kind enough to follow closely every step in the whole work.

With great pleasure, I would like to offer too much greetings to the active and faithful Dr. Hosam El-Din Abdel-Aziz for his advice, directions and revision of the whole study.

Special thanks to my colleague Dr. Yehia Mekiah for his sincere help.

To my Family, friends and colleagues who helped me and supported me all the way.

Ahmed El Saady 2005

CONTENTS

Acknowledgement ······	I
Contents ·····	·· II
List of tables ·····	· III
List of figures ······	VII
List of abbreviations ······	X
_ Introduction ······	…1
– Aim of the work ······	···4
 Review of literature 	
Chapter (1):Zinc ······	5
Chapter (2): Copper ······	· 17
Chapter (3): Hepatocellular carcinoma ······	· 38
- Patients and Methods ······	114
– Results ·····	122
– Discussion ······	156
- Summary and Conclusion ·····	162
- Recommendations ·····	164
- References ·····	165
– Arabic summary	

List of Abbreviations

AFB1 : Aflatoxin B1.

AFP : Alpha fetoprotein.

ALP : Alkaline phosphatase .

ALT : Alanine transferase.

BMD : Bone mineral density.

CHD : Coronary heart disease .

CLD : Chronic liver disease.

CT : Computed tomographic scan.

Cu : Copper.

DN : Dysplastic nodules .

DNA : Deoxy ribonucleic acid.

EASL :Europian Association for the

Study of the liver.

FNB : Food and Nutrition Board .

HBc-Ag : Hepatitis B core antigen .

HBs-Ag : Hepatitis B surface antigen.

HBV : Hepatitis B virus.

HCC : Hepatocellular carcinoma.

HCV : Hepatitis C virus.

HH : Heridetary haemochromatosis.

LDL : Low Density Lipoprotein LOH : Loss of heterozigosity.

mcg : Microgram.
mg : Milligram.
mm : Millimeter.

PAI : Percutaneous acetic acid injection.
PEI : Percutaneous ethanol injection.
RDA : Recommended daily allowance.
RTFA : Radio frequency thermal ablation.

RNA : Ribonucleic acid.

SOD : Superoxide dismutase.

U/S : Ultrasound

Zn : Zinc.

List of Figures

Num	Title	Page
1	Different grades of dysplastic nodules	65
2	Stromal invasion in Well- differentiated early-stage HCCs.	70
3	Gross picture of advanced HCC.	74
4	Treatment of HCC.	96
5	Experimental HCC therapies.	105
6	Primary HCC prevention.	106
7	Secondary HCC prevention.	110
8	Comparison between CLD and HCC group as regards ESR	144
9	Comparison between CLD and HCC group as regards Alphafetoprotein .	145
10	Comparison between Control, CLD and HCC groups as regards serum Copper levels.	146
11	Comparison between Control, CLD and HCC groups as regards serum Zinc levels.	147

12	Comparison between Control, CLD and HCC groups as	148
	regards serum copper-Zinc ratio.	
13	Comparison between CLD and	149
	HCC groups as regards tissue	
	Copper levels.	
14	Comparison between CLD and	150
	HCC groups as regards tissue	100
	Copper levels.	
15	Comparison between CLD and	151
	HCC groups as regards tissue	
	Copper / Zinc ratio	
16	Correlation between tissue copper	152
	and size of focal lesion.	10_
17	Correlation between tissue	153
	copper/zinc ratio and size of	100
	focal lesion.	
18	Correlation between serum	154
	copper and AFP.	101
19	Correlation between serum zinc	155
	and AFP.	100

List of Tables

Number	Title	Page
1	Recommended Dietary	26
	Allowance for copper	
2	Copper content of food	33
3	Tolerable Upper Intake Level	36
	(UL) for Copper	
4	Diagnostic criteria for HCC	79
_	according to the Barcelona	
	EASL conference.	
5	TNM Staging of HCC	81
6	The Barcelona Clinic Liver	84
	Cancer classification staging	
	of patients with HCC.	
7	Okuda HCC staging	85
8	Comparison between HCC	124
	and CLD groups as regards	121
	age.	
9	Comparison between HCC	125
	and CLD groups as regards	
	sex	
10	Comparison between CLD	126
10	and HCC group as regards	120

	History	
11	Comparison between CLD	127
	and HCC group as regards	
	Clinical examination	
12	Comparison between CLD	128
	and HCC group as regards	
	Liver function tests, Renal	
	functions and CBC.	
13	Comparison between CLD	129
	and HCC group as regards	
	hepatitis markers.	
14	comparison between CLD and	130
	HCC group as regards ESR	
15	Comparison between CLD	131
	and HCC group as regards	
	Alpha-fetoprotein .	
16	Comparison between Control	132
	and CLD groups, Control and	
	HCC groups ,CLD and HCC	
	groups as regards serum	
	Copper levels	
17	Comparison between Control	133
	and CLD groups, Control and	
	HCC groups ,CLD and HCC	
	groups as regards serum Zinc	
	levels.	

18	Comparison between Control and CLD groups, Control and HCC groups ,CLD and HCC groups as regards serum Zinc	134
	levels.	
19	Comparison between CLD and HCC group as regards Liver tissue copper.	135
20	Comparison between CLD and HCC group as regards Liver tissue zinc .	136
21	Comparison between CLD and HCC group as regards Liver tissue copper- zinc ratio	137
22	Comparison between different classes of patients of CLD group according to Child – Pugh classification as regards serum copper, serum zinc, serum copper-zinc ratio, tissue copper, tissue zinc and tissue copper-zinc ratio.	138
23	Shows comparison between different classes of patients of HCC group according to Child – Pugh classification as	139

	regards serum copper, serum zinc, serum copper-zinc ratio, tissue copper, tissue zinc and	
	tissue copper-zinc ratio.	
24	Correlation between largest diameter of hepatic tumor and	140
	serum copper, serum zinc, serum copper-zinc ratio.	
25	Correlation between largest diameter of hepatic tumor and liver tissue copper, liver tissue zinc, liver tissue copper-zinc ratio.	141
26	Correlation between Alfa- fetoprotein and serum copper, serum zinc, serum copper- zinc ratio.	142
27	Correlation between Alfa- fetoprotein and liver tissue copper, liver tissue zinc, liver tissue copper-zinc ratio.	143

Aim Of The Work

Our study aimed to measure Copper , Zinc and Copper / Zinc ratio in cases of HCC and liver cirrhosis patients compared to normal controls to find out the possible value of these electrolytes as markers for prediction of HCC development in patients with liver cirrhosis .

Introduction

Hepatocellular carcinoma (HCC) is a major cause of death in patients with chronic liver disease .Worldwide , HCC is estimated to cause between 250,000 and 1 million deaths annually (*Duvoux*, 1998).

In cirrhotic patients, the incidence of HCC annually has been reported to be between 2% and 7% (*Kountouras and Lygidakis*, 2000).

To improve the prognosis of HCC, it is important to detect its presence as early as possible. Thus, screening for HCC is widely believed to be an effective form of secondary prevention. Screening studies have shown that it is possible to find small lesions that may be resectable (*Gambarin-Gelwan et al.*, 2000).

The standard recommended screening tests for periodic follow up examinations are ultrasound (U/S) and alpha fetoprotein (AFP). Both tests have significant false positive and false negative rates. Moreover, AFP determination is considered to be insufficient for early recognition of small HCC

Introduction

because many patients with small masses have low levels of AFP and because serum levels of AFP are also elevated in benign liver disease (*Bayati et al.*, 1998).

A greater problem is the finding of suspicious masses on U/S examination which require intensive investigation but turn out not to be HCC .therefore, other potentially useful screening tests are required in current clinical practice .

Hypozincemia, marked hypercupremia have been reported in patients with digestive (*Beno et al.*, 2000), hepatic (*Masaaki et al.*, 2000), breast (*Yucel et al.*,1994), lung (*Ren et al.*, 2000), hematological malignancy (*Sun et al.*, 2000).

Zinc and copper have been recognized as playing an important role as cofactors of superoxide dismutase. This enzyme protects cells against free radicals produing agents that might be involved in initiating neoplastic process (*Griglo et al.*, 1998)

Zinc plays an important role as a cofactor of superoxide dismutase enzyme which protects cells against free radicals that might play a role in initiating neoplastic process (*Wu et al.*, 1998).