ENDOVASCULAR TREATMENT OF SMALL RUPTURED INTRACRANIAL ANEURYSM AT ANTERIOR CEREBRAL CIRCULATION

Thesis

Submitted for the Partial Fulfillment of MD Degree in Neurosurgery

Presented By Mohamed Helmy Abd El Shafouk Mohamed M.B., B.Ch. Master of General Surgery

Under Supervision of

Prof. / Hossam Mohamed El Husseiny Khalil

Professor of Neurosurgery
Faculty of Medicine – Ain Shams University

Prof. / Omar Yusef Hammad

Professor of Neurosurgery
Faculty of Medicine – Ain Shams University

Prof./ Mohamed Alaa El-Din Habib

Professor of Neurosurgery
Faculty of Medicine- Ain Shams University

Dr./ Sherif Hashem Morad

Assistant Professor of Neurosurgery
Faculty of Medicine- Ain Shams University

Faculty of Medicine - Ain Shams University 2017

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** / **Hossam Mohamed & Hosseing Khalil**, Professor of Neurosurgery - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof.** / **Omar Yusef Hammad**, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof./ Mohamed Alaa 21-Din Habib**, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr./ Sherif Hashem Morad**, Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Helmy

Dedication

This work is dedicated to . . .

Prof. / Mohamed Alaa El-Din Habib, Professor of

Neurosurgery, for her valuable suggestions, advice, efforts and for allowing me a free access to his precious time during the accomplishment of this work

List of Contents

Title	Page No.
List of Tables	5
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Work	4
Review of Literature	
o Cerebrovascular Anatomy	5
o Intracranial Aneurysms	29
o Aneurysmal Rupture	37
o Endovascular Treatment	79
Patients and Methods	100
Results1	
Discussion	
Summary 15	
Conclusions	
References	
Arabic summary	

List of Tables

Table No.	Title Pa	ge No.
Table (1):	Hunt & Hess scale	49
Table (2):	World Federation of Neurosurgeon (WFNS) classification uses Glasgow comscore	na
Table (3):	Fisher grading system	
Table (4):	Management protocol for treatment SAH	of
Table (5):	Hunt & Hess scale	101
Table (6):	Fisher grading system.	102
Table (7):	Modified ranking score	121
Table (8):	Raymond-Roy score	121
Table (9):	Sex distribution among study cases	122
Table (10):	Age distribution among study cases	123
Table (11):	Symptoms distribution among students	-
Table (12):	Hunt and Hess distribution among students	-
Table (13):	Fisher grade distribution among stud	ly
Table (14):	Aneurysms locations among study cases	127
Table (15):	Comorbidities distribution among stud	v
Table (16):	Technique of coiling distribution amor study cases	ng
Table (17):	Complication related to aneurys rupture distribution among study cases.	
Table (18):	Operative complications distributions among study cases	n
Table (19):	Outcome of treated aneurys distribution among study cases	m

List of Cables (Cont...)

Table No.	Title	Page No.
Table (20):	mRS after one year distribution a study cases	-
Table (21):	Immediate radiological ou distribution among study cases	
Table (22):	Radiological follow up after one distribution among study cases	-
Table (23):	Correlation between imm radiological outcome and one year	
	up	139
Table (24):	Summary of study results	139

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	General outline of the brain arteries	6
Fig. (2):	A, Anatomic drawing of the aortic arch and great vessels with their major branches. B, Digital Subtraction aortic arch angiogram, Left anterior oblique view	8
Fig. (3):	Diagram illustrating the segments of the internal carotid artery	10
Fig. (4):	Lateral common carotid angiograms show the normal extracranial internal carotid artery (ICA)	11
Fig. (5):	Cavernous segment of the ICA	12
Fig. (6):	Selective internal carotid angiograms in different patients demonstrate the ICA segments	14
Fig. (7):	Lateral late arterial phase view of a selective internal carotid angiogram is shown	17
Fig. (8):	Lateral View of a selective internal carotid angiogram shows the C6 (ophthalmic) and C7 (communicating) ICA segments and their major branches	19
Fig. (9):	Early arterial phase view of a left internal carotid angiogram	
Fig. (10):	A: Lateral view of a right internal carotid angiogram shows a fetal posterior cerebral artery (PCA). B: Anteroposterior view of the right vertebral angiogram in the same patient	20
Fig. (11):	Suprasellar and parasellar areas are exposed to show the carotid bifurcation into its terminal branches	21
Fig. (12):	Anterior view showing the carotid bifurcation; ACA; MCA; lenticulostriate branches arising from M1	21
Fig. (13):	Anteroposterior internal carotid angiogram shows the MCA and its branches	23
Fig. (14):	Diagram illustrating the anterior cerebral artery	25
Fig. (15):	Internal carotid angiogram, lateral view	27
Fig. (16):	Left ICA angiogram AP view	28
Fig. (17):	Common site of brain aneurysms.	31
Fig. (18):	Two grades of SAH according to Fisher's classification	54

List of Figures (Cont...)

Fig. No.	Title Page	No.
Fig. (19):	CT scans demonstrating the modified Fisher CT rating scale	_
Fig. (20): Fig. (21):	Multisclice CT 3D angiography of the cerebral vessels Three-dimensional rotational digital subtraction angiogram, carotid injection, reveals a small anterio	n
F: (99)	communicating artery aneurysm	61
Fig. (22): Fig. (23):	Matrix Coil	t s s t
Fig. (24):	The Orbit coils consist of a random complex shape and the Nexus Tetris coil uses multiple fibers emanating from the coil to enhance thrombus conversion to fibrosis	d g
Fig. (25):	The balloon catheter is positioned and inflated to occlude the aneurysm neck during coil deposition	
Fig. (26):	A. The 43 years old female suffered from explosive headache. B. The first microcatheter was navigated to the aneurysm sac and initiates the coiling process, but easy coil herniation was noted. C. The Complex coil (MicroVention, Aliso Viejo, CA, USA), 5 mm-12 cm, was delivered as the protective coil within the parent artery at the aneurysm level, to act the neck bridge effect. Definition that the metal the aneurysm satisfies a successfully with the help of protective coil, act as the	o t t il s y c c
Fig. (27):	neck bridge	
1 1g. (=1).	with double microcatheters technique	94
Fig. (28): Fig. (29):	Pipeline Embolic Devices	n e e O

List of Figures (Cont...)

Fig. No.	Title Page N	10.
Fig. (30):	Four French dilator/transitional introducer sheath, and 0.018 in. micro-guidewire	104
Fig. (31):	From top to bottom, introducer sheath, dilator, and guidewire	104
Fig. (32):	AP angiogram of the Brachiocephalic, Rt. CCA, Rt. Subclavian, Rt. Vertebral arteries on the left with road mapping of the same vessels on the Right.	105
Fig. (33):	AP angiogram of the Rt. ICA showing mid and late arterial phases	106
Fig. (34):	AP angiogram showing venous phase of the Rt. ICA circulation	106
Fig. (35):	Lateral angiogram of the Rt. ICA circulation showing arterial phase.	107
Fig. (36):	Lateral angiograme of the Rt. ICA showing venous phase.	107
Fig. (37):	AP view of Rt. femoral angiogram done before closure	108
Fig. (38):	Monitor in cath.lab.	109
Fig. (39):	SL10 microcatheter (stryker).	110
Fig. (40):	3D digital subtraction angiography.	111
Fig. (41):	55 – female patient with subarachnoid hemorrhage digital subtraction angiography done showing pericallosal aneurysm from left side	111
Fig. (42):	A, Arterial phase DSA image (lateral view) of the left ICA shows a small aneurysm of PCOM. B, Balloon remodling technique. C, Coil empolization (Roadmap). D, Arterial phase image (lateral projection) from follow-up angiography of the left ICA at 24 months settles stability of aneurysmal occlusion	113
Fig. (43):	A 61-year-old female with subarachnoid hemorrhage	
Fig. (44):	Configurations of helical and three-dimensional coil	
Fig. (45):	Electrical detachment device and mechanical detachment device.	
Fig. (46):	Vasospasm pre nimodipine injection.	
Fig. (47):	Post-nimodipine injection	
Fig. (48):	Sex distribution among study cases	122

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (49):	Age distribution among study cases	123
Fig. (50):	Symptoms distribution among study cases	124
Fig. (51):	Hunt and Hess distribution among study cases	125
Fig. (52):	Fisher grade distribution among study cases	126
Fig. (53):	Aneurysms locations among study cases	127
Fig. (54):	Comorbidities distribution among study cases	129
Fig. (55):	Technique of coiling distribution among study cas	ses131
Fig. (56):	Complication related to aneurysm rupture distramong study cases distribution among study cases	
Fig. (57):	Operative complications distribution among cases.	104
Fig. (58):	Outcome of treated aneurysm distribution amon cases.	
Fig. (59):	mRS after one year distribution among study cas	es136
Fig. (60):	Immediate radiological outcome distribution study cases	_
Fig. (61):	Radiological follow up after one year distramong study cases.	

List of Abbreviations

Abb.	Full term
ACA	Anterior cerebral artery
	Anterior choroidal artery
	Arterior communicating Art.
	Anterior inferior cerebellar artery
	Basilar artery
	Common carotid artery
CN II	Cranial nerve II
DSA	Digital subtraction angiography
ECA	External carotid artery
<i>FDD</i>	Flow diversion device
Front Br	Frontal branch
<i>ICA</i>	Internal carotid artery
<i>L.P.</i>	Lumbar puncture
<i>LSA</i>	Lenticulostriate artery
<i>LtICA</i>	Left internal carotid artery
LtPcom	Left posterior communicating artery
<i>MCA</i>	Middle cerebral artery
<i>MRS</i>	Modified Ranken score
<i>OA</i>	Ophthalmic artery
<i>OLF-Tr</i>	Olfactory tract
<i>PCA</i>	Posterior cerebral artery
<i>PcoA</i>	Posterior communicating artery
<i>PED</i>	Pipeline embolization device
<i>PICA</i>	Posterior inferior cerebeller Art.
<i>Rec Art</i>	Recurrent artery huebner
<i>SAH</i>	Subarachnoid haemorrhage
SCA	Superior cerebeller artery
<i>VA</i>	Vertebral artery
<i>VA</i>	Vertebral artery

Introduction

which weakness in the wall of a cerebral artery or vein causes a localized dilation of the blood vessel. Intracranial aneurysms are common, with a prevalence of 0.5% to 6% in adults. Most intracranial aneurysms are asymptomatic. Some are discovered incidentally in neuroimaging studies and some produce symptoms due to compression of neighboring nerves or adjacent brain tissue. Others are detected only after they have ruptured and caused subarachnoid hemorrhage, a devastpating type of stroke associated with 32% to 67% case fatality and 10% to 20% morbidity (*Caranci et al., 2012*).

Almost all aneurysms rupture at their apex. This leads to hemorrhage in the subarachnoid space and sometimes in brain parenchyma. Minor leakage from aneurysm may precede rupture, causing warning headaches. About 60% of patients die immediately after rupture. Larger aneurysms have greater tendency to rupture, though most of ruptured aneurysms are less than 10 mm in diameter. Also, vasospasm can occur secondary to subarachnoid hemorrhage following a ruptured aneurysm. This is most likely to occur within 21 days and is seen radiologically within 60% of such patients. The vasospasm is thought to be secondary to the apoptosis of inflammatory cells that become trapped in the subarachnoid space (Willinsky et al., 2009).

Once suspected, intracranial aneurysms can be diagnosed using (CT3D) cerebral angiography, conventional angiography, magnetic resoning imaging. Currently there are two treatment options for securing intracranial aneurysms: Surgical clipping or endovascular coiling. If possible, either surgical clipping or endovascular coiling is usually performed within the first 24 hours after bleeding to occlude the ruptured aneurysm and reduce the risk of rebleeding. Surgical clipping was introduced by Walter Dandy of the Johns Hopkins Hospital in 1937 (Klompenhouwer et al., 2011).

Endovascular coiling refers the insertion to of platinum coils into the aneurysm, the coils expand and initiate a thrombotic reaction within the aneurysm that. In the case of broad-based aneurysms, a stent may be passed first into the parent artery to serve as a scaffold for the coils (*Plowman* et al., 2011).

Small aneurysms, compared to larger ones are more difficult to embolize, as there is a smaller margin for error with microcatheter placement, and the forces applied by the coil existing into aneurysm are distributed across a smaller surface area, increasing the risk of perforation, particulary in recently ruptured lesions (Sluzewski and van Rooij, 2003).

An aneurysm may grow or recanalize after coil embolization. This may occur even in aneurysms that appear occluded after completely initial treatment. Further embolization is possible and may be required to prevent growth and potential subarachnoid hemorrhage. Catheter angiography has been the preferred imaging modality for follow-up after coil embolization. Although MR angiography can identify a residual aneurysmal neck, platinum coils are associated with artifacts that preclude reliable imaging of treated aneurysms with MR and CT angiography (Willinsky et al., 2009).

The most significant factors in determining outcome are the Hunt and Hess grade, and age. Generally patients with Hunt and Hess grade I and II on admission to the emergency room and patients who are younger within the typical age range of vulnerability can anticipate a good outcome, without death or permanent disability. Older patients and those with poorer Hunt and Hess grades on admission have a poor prognosis. Generally, about two thirds of patients have a poor outcome, death, or permanent disability (Caranci et al., 2012).

AIM OF THE WORK

valuate the efficacy of the endovascular treatment of small ruptured intracranial aneurysm at anterior cerebral circulation as regard radiological and clinical outcome. This study will be conducted during the period between December 2013 to December 2015.