

Design and Synthesis of Small Organic Molecules having Potential Biological Activity

Thesis Presented by

Eman Moussa Mohammed El-labbad

BSc. in Pharmaceutical Sciences (May 2005)
MSc. in Pharmaceutical Sciences (Pharmaceutical Chemistry) (March 2011)
Assistant Lecturer of Pharmaceutical Chemistry
Faculty of Pharmacy
Ain Shams University

Submitted for the partial fulfilment of the

Doctorate of Philosophy Degree

In Pharmaceutical Sciences (Pharmaceutical Chemistry)

Under the supervision of

Khaled Abouzid Mohamed Abouzid

Binghe Wang

Professor and Chairman of Pharmaceutical Chemistry
Department
Faculty of Pharmacy
Ain Shams University

Rabah A.T. Serya

Assistant Professor of Pharmaceutical Chemistry Faculty of Pharmacy Ain Shams University Regents Professor and Associate Dean for Natural and
Computational Sciences
Chemistry Department
Georgia State University

Deena S. Lasheen

Lecturer of Pharmaceutical Chemistry Faculty of Pharmacy Ain Shams University

Faculty of Pharmacy
Ain Shams University

2017

Acknowledgements

It's a pleasure to express my sincere appreciation to **Professor Khaled Abouzid Mohamed Abouzid,** Professor and Chairman of Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, for his scientific supervision, fruitful opinion, valuable advices and continuous encouragement. I am indebted to him for his guidance and endless support.

I would like to express my sincere gratitude and thankfulness to **Professor Binghe Wang**, Regents Professor and Associate Dean for Natural and Computational Sciences, Georgia State University, for giving me the opportunity to join his laboratory for one years. I appreciate his innovative ideas, scientific supervision, wise mentoring, guidance and encouragement.

I owe my truthful gratitude to **Dr. Rabah A.T. Taha**, Assistant Professor of Pharmaceutical Chemistry and **Dr. Deena S. Lasheen** Lecturer of Pharmaceutical Chemistry, for their continuous encouragement and support. I am heartily grateful to their real interest, trust, caring, and eminent guidance.

I am sincerely thankful for **Dr. Xingyue Ji**, Postdoctoral Fellow and Research Scientist at Chemistry department, Georgia State University, for his wise mentoring, tremendous support. I am heartily grateful to this indispensable opinion, real interest, trust, eminent guidance and untiring help throughout the whole work.

I acknowledge with thankfulness all my colleagues in Pharmaceutical Chemistry Department and Wang's lab members, for their friendly cooperation, support and their generous and valuable aid.

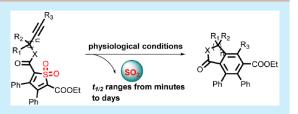
Finally, I am profoundly indebted to my family for their unconditional love and aid, endless patience, understanding, encouragement and full support all throughout the whole long way.

The work presented in this thesis was published in;

Letter

pubs.acs.org/OrgLett

Click and Release: SO₂ Prodrugs with Tunable Release Rates


Xingyue Ji, †, § Eman M. El-labbad, ‡, § Kaili Ji, † Deena S. Lasheen, ‡ Rabah A. T. Serya, ‡ Khaled A. Abouzid, ‡ and Binghe Wang*, †

[†]Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 United States

[‡]Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt

Supporting Information

ABSTRACT: Employing an intramolecular cycloaddition reaction, we have developed a series of SO_2 prodrugs with tunable release rates with half-lives ranging from minutes to days.

Org. Lett., 2017, 19 (4), pp 818–821

DOI: 10.1021/acs.orglett.6b03805

Publication Date (Web): January 30, 2017

Copyright © 2017 American Chemical Society

Content

List of Figures	1
List of Tables	\boldsymbol{V}
Abbreviations	VI
Abstract	IX
1.Introduction	1
1.1.Gasotransmitters Definition, Criteria and Classification	1
1.2. Biological and therapeutic role of gasotransmitters	3
1.2.1. Nitric Oxide (NO)	3
1.2.2. Carbon Monoxide (CO)	6
1.2.3. Hydrogen Sulfide (H ₂ S)	8
1.2.4. Sulfur Dioxide (SO ₂)	10
1.2.5. Shared signaling pathway among gasotransmitters (NO, CO, H ₂ S and SO ₂)	14
1.2.6. Gasotransmitters and cancer	15
1.3.Exogenous gasotransmitters drug delivery systems	18
1.3.1. Inhalation Form	18
1.3.2. Small Molecules	19
1.3.2.1. Metal based releasing molecules	19
1.3.2.1.a. NO Metal based releasing molecules	19
1.3.2.1.b CO Metal based releasing molecules	20
1.3.2.2. Enzyme triggered releasing molecules	21
1.3.2.2.a. Enzyme triggered NO-releasing molecules	22
1.3.2.2.b. Enzyme triggered CO-Releasing molecules	22
1.3.2.2.c. Enzyme Triggered H ₂ S- Releasing Molecules	24
1.3.2.3. Photosensitive organic releasing molecules	25
1.3.2.3.a Photo-sensitive organic CO-Releasing Molecules	25

1.3.2.3.b Photo-sensitive organic SO ₂ -Releasing Molecules	<i>26</i>
1.3.2.3.c Photo-sensitive organic H ₂ S-Releasing Molecules	27
1.3.2.4.Thiol Activated Releasing Molecules	27
1.3.2.4.a. Thiol activated NO Releasing Molecules	28
1.3.2.4.b. Thiol activated H ₂ S Releasing Molecules	29
1.3.2.4.c Thiol activated SO ₂ Releasing Molecules	<i>30</i>
1.3.2.5. Organic compounds release gasotransmitters under physiological	
conditions	31
1.3.3.Materials and polymers	36
2. Rationale and Design	38
3. Results and Discussion	44
3.1. Chemistry	44
3.1.1.Scheme (1)	44
3.1.2.Scheme (2)	51
3.1.3.Scheme (3)	53
3.1.4.Scheme (4)	62
3.2. Amide rotamers and ¹ H NMR temperature dependent study	65
3.3. Verification of SO ₂ release	<i>67</i>
3.4.Kinetic Study of SO ₂ Release	70
3.5. Conformation analysis study for prodrugs (XVa) and (XVc)	75
3.6.Biology	79
4. Conclusion and Future Perspective	83
5. Experimental	85
5.1. Chemistry	85
5.1.1. Materials and methods	85
5.1.2. Synthssis	85

7. References	137
6. Supplementary Data	111
5.4.Biology	110
5.3.Kinetic study of SO ₂ release	104
5.2. Verification of SO ₂ release	100
5.1.2.4. Scheme (4)	96
5.1.2.3. Scheme (3)	92
5.1.2.2. Scheme (2)	89
5.1.2.1. Scheme (1)	85

List of Figures

Figure (1).: Publication trends on gasotransmitter research	2
Figure (2.): Generation of Nitric oxide from L-arginine by nitric oxide synthase	3
Figure (3): Nitric oxide generation by eNOS. Several stimuli induce eNOS activation	
and NO production in endothelia cells	4
Figure (4): (A) Nitric oxide generation by nNOS. (B). Nitric oxide generation by iNOS	
showing the activation of iNOS promoter requires interferon regulatory factor 1 and	
nuclear factor K-light-chain-enhancer of activated B cells.	5
Figure (5): Endogenous production of CO	7
Figure (6): The biosynthesis and degradation of hydrogen sulfide (H ₂ S) in mammalian	
cells	8
Figure (7): Endogenous H ₂ S synthesis	9
Figure (8): Known molecular targets for hydrogen sulfide (H ₂ S)	10
Figure (9): The production and metabolism of SO ₂ in mammalian cells	11
Figure (10): Signaling pathway involved in the effect of SO ₂ .	12
Figure (11): A schematic diagram of the inhibition of proliferation by SO ₂	12
Figure (12): Signaling pathways of NO, CO, and H ₂ S and SO ₂ in vascular smooth	
muscle cells	14
Figure (13): Implications of the bell-shaped pharmacological profile of gasotransmitters	
for the therapy of cancer.	15
Figure (14): Pro-tumor effects of low levels of endogenously produced NO, carbon	
monoxide (CO) and hydrogen sulfide (H ₂ S)	17
Figure (15): Exogenous gasotransmitters drug delivery methods	18
Figure (16): The mechanism of release of NO from sodium nitroprusside	20
Figure (17): The general concept of acyloxycyclohexadiene iron tricarbonnyl enzyme	
trigger carbon monoxide releasing molecules.	22
Figure (18): Design strategy of protease-activated ET-CO-RMs.	23
Figure (19): Mechanism of release of H ₂ S from esterase sensitive prodrugs (12,13). A)	
Design strategy of esterase sensitive-H ₂ S donor. B) mechanism of H ₂ S release from	

prodrug (12). C) Mechanism of release of naproxen and H ₂ S from the hybrid prodrug	
(13).	24
Figure (20). The photoreaction of 3-hydroxyflavone analogues (14a-d)	25
Figure (21): The design strategy and SO ₂ release mechanism of benzosultines (15a-c)	
and benzosulfones (17) SO ₂ donors.	26
Figure (22): The design strategy and release mechanism of photosensitive H ₂ S donors.	
A) The design strategy of photocaged H ₂ S-based photosensitive H ₂ S prodrugs. B) The	
design strategy of photocaged gem-dithiol photosensitive H ₂ S donors	27
Figure (23): The mechanism of release of NO glutathione activated NO -donor (21)	28
Figure (24): The design strategy and H ₂ S release mechanism from thiol activated H ₂ S	
donor. (A) The Design of (acylthiol) benzamide thiol activated H ₂ S donor. (B) The	
design strategy of perthiol -thiol activated H ₂ S donor. (C) The proposed mechanism of	
H ₂ S release from prodrug (acylthiol) benzamide thiol activated H ₂ S donor	29
Figure (25). Proposed mechanism for thiol-mediated SO ₂ generation from 2,4-	
dinitrophenylsulfonamides (24).	30
Figure (26) . Mechanism of release of SO ₂ from benzosthiazole sulfonate prodrug (25).	31
Figure (27): The design strategy of "click and release" CO or SO ₂ bimolecular prodrugs.	32
Figure (28): The click reaction between TPCPDs (26) and BCNs (27)	3 3
Figure (29): The bimolecular SO ₂ drug system based on click reaction between BCN	
and Thiophene-S-dioxide.	34
Figure (30): The mechanism of CO release after intramolecular click reaction of CO-	
prodrugs 32a-g , fluorophore formed in CP-34a-g is colored in blue	35
Figure (31): Design strategy of a unimolecular SO ₂ prodrug showing click and release	
strategy	39
Figure (32): Mechanism of SO ₂ release from the designed thiophene-S-dioxide	
prodrugs	40
Figure (33): Proposed mechanism of click reaction between thiophene-S-dioxide moiety	
and alkyne side chain of compound XVa via intramolecular inverse electron demanded	
Diels-Alders cycloaddition reaction based on frontier orbital description	41
Figure (34): Mechanism of Hinsberg thiophene synthesis. A) Proposed mechanism via	
clasein -type condensation. B) Mechanism proposed by Hans Wynberg and H. J.	

Kooreman via Stobbe-type condensation C) Thiophene condensation using O ¹⁸ - enriched	
benzil.	45
Figure (35): Hinsberg thiophene synthesis using <i>De novo</i> polymer supported system	46
Figure (36): Mechanism of carbodiimdide / DMAP- mediated ester/amide coupling	48
Figure (37): Different strategies used in amide bond formation	54
Figure (38): Alcohols commonly used in amide bond formation via active ester	
procedure	56
Figure (39) The NHS ester aminolysis mechanism proposed by Cline et al	57
Figure (40): Mechanism of amide bond coupling reaction using acyl chlorides. A)	
Mechanism of acyl chloride formation using thionyl chloride or oxalyl chloride. B) The	
catalytic role of DMF	59
Figure (41): Mechanism of acid chloride formation by cyanuric chloride	59
Figure (42): Catalytic role of Pyridine and DMAP in coupling reaction of acid chloride	
and amine	60
Figure (43): Oxidation of XIIa-d.	61
Figure (44): Amide rotamer and ¹ H NMR temperature dependent study. (A) Resonance	
form of amide showing C-N bond partial double bond character and C-O partial single	
bond character. (B) Potential rotational isomers of prodrug (XVIa). (C) ¹ H NMR spectra	
of prodrug (XVIa) at 25 °C. (D) Temperature dependent ¹ H NMR study of prodrug	
(XVIa) in CDCl ₃ . Three pairs of protons were present at 25 $^{\circ}$ C, yet they begin to coalesce	
as temperature increased to 60 °C indicating that these rotamers are thermodynamic	
equilibrium.	66
Figure (45): Cyclized product (CP-XVa-c) and (CP-XVIa,b) formation after incubation	
of solution of prodrugs (XVa,b) and (XVIa-c) in DMSO/PBS (1:1) at 37 °C for 1-24	
hours	<i>67</i>
Figure (46): (A)Mechanism of SO ₂ detection using DTNB. B) UV absorption at 412	
nm of DTNB test after 30 min incubation at room temperature or 37 °C	69
Figure (47): Absorbance spectra of the prodrugs XVa-c and XVIa,b and their	
corresponding cyclized product CP-XVa-c and CP-XVIa,b	70
Figure (48): 1H NMR experiment demonstrates the sluggish SO ₂ release and slow	
cyclization rate of VIb incubated in DMSO- <i>d</i> ₆ /D ₂ O at 37 °C	72

Figure (49): 1H NMR experiment to investigate the cyclization of XVb incubated in	
CDCl ₃ at 37 °C.	73
Figure (50): Dipole repulsion of ester favours transoid geometry	74
Figure (51): Proposed 2D conformation for(XVa) showing HB between amidic proton	
and the oxygen of S-dioxide disfavoring the intended cycloaddition	74
Figure (52) The SO ₂ release kinetics for XVc in CH ₃ CN	<i>75</i>
Figure (53): 2D diagram of the suggested Cis-trans geometries of designed prodrugs and	
their effect on the intended Diels-Alders cycloaddition reaction. (A). 2D diagram of	
designed prodrug showing monitored torsion angle θ . (B) The effect of cis an trans	
geometry on Diel Alders reactions described by frontier orbital theory.	<i>76</i>
Figure (54) XVa and XVc conformation analysis. (A). Energy diagram of XVa showing	
energy difference between the cis and trans conformations. (B) Energy diagram of XVc	
showing the energy difference between the cis and trans conformations	<i>78</i>
Figure (55): Theory of supercoiled plasmid cleavage assay.	<i>79</i>
Figure (56): The mechanistic scheme proposed for metal catalysed sulphite	
autoxidation.	80
Figure (57): Cascade reaction of radical cation with guanine leading to formation of 8-	
hydroxyguanine.	80
Figure (58): The DNA cleavage assay XVb (100 mM), CP-XVb (100 mM) and bisulfite	
(100 mM)	81
Figure (59): A benzo[e]indolium SO ₂ fluorescent probe and its sensing mechanism	82
Figure (60): The SO_2 release from XVb in RAW264.7 cells. a) XVb (100 μ M) only;	
b) SO_2 probe only (10 μ M); c) Bisulfite (100 μ M) + SO_2 probe (10 μ M); d) XVb (100	
$\mu M) + SO_2 \ probe \ (10 \ \mu M) \$	82
Figure (61): Tethering linker modification and their effect on tuning SO ₂ release rate	
as revealed by prodrugs VIa,b, XVa-c and XVIa,b	83

List of Tables

Table (1). The three nitric oxide synthase isoforms	3
Table (2) Biological system /effect modulated by nitric oxide.	6
Table (3): Signal pathways involved in the pathophysiological effects of SO ₂	13
Table (4) The changes in the expression of gasotransmitter-producing enzymes in	
various forms of cancer.	<i>16</i>
Table (5): SO ₂ release profiles of BTS (0.4mM) in various pH buffers	<i>32</i>
Table (6): Advantages and disadvantages of different gasotransmitter delivery	<i>37</i>
methods	
Table (7) : Wave lengths used for kinetic studies of SO ₂ release rate for prodrugs XVa -	
c and XVIa,b.	<i>70</i>
Table (8) The average reaction rate constant K and half life $t_{1/2}$ for prodrugs $\textbf{VIa,b}$,	
XVa-c and XVIa,b.	71
Table (9) showing UV absorption at 412 nm of DTNB test after 30 min incubation at	
room temperature or 37 °C	104

List of Abbreviation

3-MST 3-Mercaptopyruvate sulfurtransferase

AC Adenylyl cyclase

Akt Protein kinase B (PKB), also known as Akt

ATP Adenosine triphosphate

bax Apoptosis regulator BAX, also known as bcl-2-like protein

Bcl-2 (B-cell lymphoma 2 BCN Bicyclo-[6.1.0]nonyne

BH4 6R-5,6,7,8-Tetrahydro-L-biopterin

BK_{Ca} Big-conductance calcium sensitive K channels

Boc Tert-butyloxycarbonyl
BTS Benzothiazole sulfinate

cAMP Cyclic adenosine monophosphate

cAMP 3'–5'-cyclic adenosine monophosphate;

CAT Cysteine aminotransferase
 CBS Cystathionine-β- synthase
 CDO Cysteine dioxygenase

cGMP Cyclic guanosine monophosphate

CL Cysteine lyase

CO-RM Carbon monoxide releasing molecules

c-Raf Rapidly accelerated fibrosarcoma (isoform c)

CSE Cystathionine-γ- lyase CVDs Cardiovascular diseases

DAPI 4',6-Diamidino-2-phenylindole

DAR_{INV} Inverse electron Demand Diel Alders reaction

DCC N,N'-Dicyclohexylcarbodiimide

DCM Dichloromethane
DCU Dicyclohexylurea

DI Deionized

DIC N,N'-DiisopropylcarbodimideDIPEA N,N-DiisopropylethylamineDMAP 4-Dimethylaminopyridine

DMD Dimethyl dioxiraneDMF DimethylformamideDMSO Dimethyl sulfoxideDNA Deoxyribonucleic acid

DTNB 5,5'-Dithiobis(2-nitrobenzoic acid)

EDC N-Ethyl-N'- (3-dimethylaminopropyl)carbodiimide

EDRF Endothelium-derived relaxing factor

eNOS Endothelial nitric oxide synthase EPC Endothelial progenitor cells

Erk/MAPK Extracellular signal-regulated kinases/mitogen-activated

protein kinase

Et₃N Triethylamine

ET-CO-RMs Enzyme triggered carbon monoxide releasing molecules

Fmoc Fluorenylmethyloxycarbonyl

GSH Reduced glutathione
 GSH- Px Glutathione peroxidase
 GSSG Oxidized glutathione
 GTP Guanosine triphosphate
 HIF1α Hypoxia-inducible factor 1α

HL-60 Human promyelocytic leukemia cells

HO-1 Heme oxygenase-1

HOAt Hydroxy-7-azabenzotriazoleHOBt Hydroxybenzotriazole

HOMO Highest occupied molecular orbital

HONB Hydroxy-5-norbornene-endo-2,3-dicarboxyimide

HPLC High performance liquid chromatography

HRMS (ESI) High resolution mass spectrometry (electron spray ionization)

IBD Inflammatory bowel diseases

ICAM-1 Intercellular Adhesion Molecule 1, also known as Cluster

of Differentiation 54

IK_{Ca} Intermediate-conductance calcium sensitive K channels

IL Interleukin

iNOS Inducable Nitric Oxide Synthase

LPS Lipopolysaccharide

LUMO Lowest unoccupied molecular orbital

mCPBA m-Chloroperbenzoic acid

MeCN Acetonitrile

MEK-1 Mitogen-activated protein kinase 1
MERK Extracellular signal-regulated kinases
MOPS (3-(N-morpholino)propanesulfonic acid

MPO Myeloperoxidase

MPTP Mitochondrial permeability transition pore

MSBT Methyl sulfonyl benzothiazole

NADPH Nicotinamide-adenine-dinucleotide phosphate

NBS N-bromosuccinimide

NF-E2 Nuclear factor erythroid 2 related factor 2

NF- κ B Nuclear factor κ B;

NHS N-hydroxy succinimde

NMR Nuclear magnetic resonance nNOS Neuronal Nitric Oxide Synthase

NOS Nitric Oxide Synthase

Nrf-2 Nuclear factor (erythroid-derived 2)-like 2, also known as

NFE2L2 or Nrf2,

NSAID Non-steroidal anti-inflammatory drug

PBS Phosphate buffered saline PDE-5 Phosphodiesterase-5

PDGF-BB Platelet-derived growth factor (PDGF)- BETA BETA CHAIN

PFP Pentafluorophenol pERK, Phosphorylated ERK

PGI₂ Prostacyclin

PI3K Phosphatidylinositol 3-kinase

PK Protein kinase
PNP p-nitrophenol
Ppm Part per million
RM Releasing molecules
sGC Soluble guanyl cyclase

SH, Thiol

SK_{Ca} Small-conductance calcium sensitive K channels

SMC Smooth muscle cells SNP Sodium nitroprusside

SO Sulfite oxidase

SOD Superoxide dismutase

SSH Hydropersulfide

STAT3 Signal transducer and activator of transcription 3

t_{1/2} Half life

TAE Trisaminomethane, acetic acid, EDTA buffer system

TFA Trifloroacetic acid
THF Tetrahydrofuran

TIMP1 Tissue inhibitor of metalloproteinases 1
TPCPD Tetraphenylcyclopentadiene-1-one

Tris-Cl Trisaminomethane or THAM (HOCH₂)₃CNH₂

TRVP Transient receptor potential vanilloid

TsCl Tosyl chloride

TSMT Thiol S-methyltransferase.

UV-Vis Ultraviolet -Visible

VEGF Vascular endothelial growth factor VSMC Vascular smooth muscle cells

Abstract

Signaling molecules come in all sizes and chemical dispositions, ranging from relatively large proteins, lipids, and peptides through biogenic amines and amino acids, to gaseous molecules. Endogenously generated gaseous molecules involved in signaling process are called "Gasotransmitters". Gasotransmitters are endogenously generated in mammalian cells with specific substrates and enzymes; their production is regulated to fulfill signaling messenger functions. They are involved in signal transduction and have specific cellular and molecular targets. Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S) are powerful signaling molecules that play a variety of roles in mammalian biology. Recently, cumulative evidences present sulfur dioxide (SO₂) as another potential gasotransmitters.

SO₂ is a lipid soluble, membrane permeable gas molecule. SO₂ can be generated endogenously during the metabolism of sulfur-containing amino acids such as L-cysteine. Endogenous SO₂ was reported to exert a negative regulation on vascular smooth muscle cell proliferation by suppressing the Erk/MAPK pathway. Its sulfite and bisulfite derivatives also showed endothelium-independent vasorelaxation effect partially by the PGI (2)-AC-cAMP-PKA signal pathway. In addition to its physiological effects in the cardiovascular system, SO₂ also showed potentials as a therapeutic agent with a variety of pathophysiological effects, including anti-hypertensive, anti-atherosclerotic, anti-oxidative, and anti-mycobacterial effects, as well as protective effects against cardiac ischemia-reperfusion (I/R) injury.

Different investigations are required to explore the potentials of SO₂ as gasotransmitter. These investigations include: exploration of the difference between the toxic and therapeutic effects of SO₂, expanding the knowledge of physiological and therapeutic effects of SO₂ in different organs and systems, studying the possible interactions between SO₂ and other gasotransmitters and exploration of the therapeutic potential of new SO₂ donors and their possible clinical utilization. Since most the biological effects observed for SO₂ was obtained by using gaseous SO₂ or its sulfite and bisulfite (3:1) derivatives. Neither of these methods could provide controlled release of SO₂ to imitate the process of endogenous production of SO₂. Thus, there is a need for the development of prodrugs or SO₂ donors that can controllably release SO₂ under